Journal of Sol-Gel Science and Technology

, Volume 80, Issue 1, pp 87–95 | Cite as

Application of silica-based monolith as solid-phase extraction sorbent for extracting toxaphene congeners in soil

  • Xiaodong MaEmail author
  • Mengying Zhao
  • Fengjun Zhao
  • Hongwen Guo
  • John CrittendenEmail author
  • Yanying Zhu
  • Yongsheng ChenEmail author
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)


A silica monolith was developed as a solid-phase extraction sorbent for the extraction and separation of toxaphene congeners from soil extraction solutions, prior to their measurement by gas chromatography-mass spectroscopy. The silica monolith was characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption and Fourier transform infrared spectroscopy. The recovery parameters including type of eluent, eluent volume, flow rate and varying amounts of sorbent were systemically optimized. Our method has a low detection limit, and it was 1.64, 0.76, 1.03 and 2.28 ng/mL for hexachloro, heptachloro, octachloro and nonachloro toxaphene, respectively. The sorbent offered good linearity with coefficient of determination (r 2) >0.99, over a concentration range of 200–1000 ng/mL. The relative recoveries of toxaphene congeners ranged between 96.8 and 105.7 % with relative standard deviations (% RSD) below 5 %. The recoveries of toxaphene congeners were 99.9–104.0 % after using the sorbent five times, showing the excellent stability and reusability of prepared silica monolith sorbent.

Graphical Abstract


Toxaphene congeners POPs Silica monolith cartridge Soil Solid-phase extraction 



The authors gratefully acknowledge financial support for this work from the National Natural Science Foundation of China (Nos. 21177066, 41225014 and 31370700), the Science and Technology Commission Foundation of Tianjin (No. 15JCZDJC40800) and Program for New Century Excellent Talents in University (NCET-12-0284). The authors also acknowledge support by the Brook Byers Institute for Sustainable Systems, Hightower Chair, and the Georgia Research Alliance at the Georgia Institute of Technology.


  1. 1.
    Zhu S, Gao L, Zheng M, Liu H, Zhang B, Liu L, Wang Y (2014) Talanta 118:210–216CrossRefGoogle Scholar
  2. 2.
    Vetter W, Klobes U, Luckas B (2001) Chemosphere 43:611–621CrossRefGoogle Scholar
  3. 3.
    Lau B, Weber D, Andrews P (1996) Chemosphere 32:1021–1041CrossRefGoogle Scholar
  4. 4.
    Fatoki OS, Awofolu RO (2003) J Chromatogr A 983:225–236CrossRefGoogle Scholar
  5. 5.
    Qiu C, Cai M (2010) J Chromatogr A 1217:1191–1202CrossRefGoogle Scholar
  6. 6.
    Gouteux B, Lebeuf M, Trottier S, Gagné JP (2002) Chemosphere 49:183–191CrossRefGoogle Scholar
  7. 7.
    Kucklick JR, Helm PA (2006) Anal Bioanal Chem 386:819–836CrossRefGoogle Scholar
  8. 8.
    Young JC, Freeman AD, Bruce RM, Williams D, Maruya K (2009) Ecotoxicol Environ Saf 72:162–172CrossRefGoogle Scholar
  9. 9.
    Guzzella L, Poma G, De Paolis A, Roscioli C, Viviano G (2011) Environ Pollut 159:2552–2564CrossRefGoogle Scholar
  10. 10.
    Korytár P, Leonards PEG, De Boer J, Brinkman UATh (2005) J Chromatogr A 1086:29–44CrossRefGoogle Scholar
  11. 11.
    Bordajandi LR, Ramos JJ, Sanz J, González MG, Ramos L (2008) J Chromatogr A 1186:312–324CrossRefGoogle Scholar
  12. 12.
    Kumar A, Malik AK, Picó Y (2010) Electrophoresis 31:2115–2125CrossRefGoogle Scholar
  13. 13.
    Kašička V (2014) Electrophoresis 35:69–95CrossRefGoogle Scholar
  14. 14.
    Poole CF, Gunatilleka AD, Sethuraman R (2000) J Chromatogr A 885:17–39CrossRefGoogle Scholar
  15. 15.
    Wang P, Zhang Q, Wang Y, Wang T, Li X, Ding L, Jiang G (2010) Anal Chim Acta 663:43–48CrossRefGoogle Scholar
  16. 16.
    Kažoka H (2002) J Chromatogr A 942:1–10CrossRefGoogle Scholar
  17. 17.
    Nema T, Chan ECY, Ho PC (2011) J Mass Spectrom 46:891–900CrossRefGoogle Scholar
  18. 18.
    Unger KK, Skudas R, Schulte MM (2008) J Chromatogr A 1184:393–415CrossRefGoogle Scholar
  19. 19.
    Pól J, Hyötyläinen T, Ranta-Aho O, Riekkola ML (2004) J Chromatogr A 1052:25–31CrossRefGoogle Scholar
  20. 20.
    Sandau CD, Sjödin A, Davis MD, Barr JR, Maggio VL, Waterman AL, Preston KE, Preau JL, Barr DB, Needham LL (2003) Anal Chem 75:71–77CrossRefGoogle Scholar
  21. 21.
    Bignardi C, Elviri L, Penna A, Careri M, Mangia A (2010) J Chromatogr A 1217:7579–7585CrossRefGoogle Scholar
  22. 22.
    Nema T, Chan EC, Ho PC (2011) J Sep Sci 34:1041–1046CrossRefGoogle Scholar
  23. 23.
    Saunders KC, Ghanem A, Wei BH, Hilder EF, Haddad PR (2009) Anal Chim Acta 652:22–31CrossRefGoogle Scholar
  24. 24.
    Lubda D, Cabrera K, Nakanishi K, Lindner W (2003) Anal Bioanal Chem 377:892–901CrossRefGoogle Scholar
  25. 25.
    Siouffi AM (2003) J Chromatogr A 1000:801–818CrossRefGoogle Scholar
  26. 26.
    Raynie DE (2010) Anal Chem 82:4911–4916CrossRefGoogle Scholar
  27. 27.
    Jandera P (2013) J Chromatogr A 1313:37–53CrossRefGoogle Scholar
  28. 28.
    Svec F (2006) J Chromatogr B 841:52–64CrossRefGoogle Scholar
  29. 29.
    Nema T, Chan ECY, Ho PC (2010) Talanta 82:488–494CrossRefGoogle Scholar
  30. 30.
    Cunliffe JM, Maloney TD (2007) J Sep Sci 30:3104–3109CrossRefGoogle Scholar
  31. 31.
    Luo Q, Shen Y, Hixson KK, Zhao R, Yang F, Moore RJ, Mottaz HM, Smith RD (2005) Anal Chem 77:5028–5035CrossRefGoogle Scholar
  32. 32.
    Aggarwal P, Tolley HD, Lee ML (2012) Monolithic bed structure for capillary liquid chromatography. J Chromatogr A 1219:1–14CrossRefGoogle Scholar
  33. 33.
    Alzahrani E, Welham K (2012) Analyst 137:4751–4759CrossRefGoogle Scholar
  34. 34.
    Shi ZG, Feng YQ, Xu L, Da SL, Ren YY (2004) Microporous Mesoporous Mater 68:55–5936CrossRefGoogle Scholar
  35. 35.
    Kim YS, Guo XF, Kim GJ (2010) Catal Today 150:91–99CrossRefGoogle Scholar
  36. 36.
    Thommes M (2010) Chem-Ing-Tech 82:1059–1073CrossRefGoogle Scholar
  37. 37.
    Ma X, Sun H, Yu P (2008) J Mater Sci 43:887–891CrossRefGoogle Scholar
  38. 38.
    Perry CC, Li X (1991) J Chem Soc Faraday Trans 87:761–766CrossRefGoogle Scholar
  39. 39.
    Péré E, Cardy H, Cairon O, Simon M, Lacombe S (2001) Vib Spectrosc 25(2):163–175CrossRefGoogle Scholar
  40. 40.
    Mansur HS, Vasconcelos WL, Lenza RS, Oréfice RL, Reis EF, Lobato ZP (2000) J Non-Cryst Solids 273:109–115CrossRefGoogle Scholar
  41. 41.
    McDonald RS (1958) J Phys Chem 62:1168–1178CrossRefGoogle Scholar
  42. 42.
    Lin J, Lin J, Lin X, Xie Z (2009) J Chromatogr A 1216:7728–7731CrossRefGoogle Scholar
  43. 43.
    Pryor G, Bingham L, Dickinson J, Rebert C, Howd R (1981) Neurotoxicol Teratol 4:71–7851Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Environmental Pollution Process and Standard, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and EngineeringNankai UniversityTianjinChina
  2. 2.Brook Byers Institute for Sustainable Systems, School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations