Skip to main content
Log in

Application of silica-based monolith as solid-phase extraction sorbent for extracting toxaphene congeners in soil

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A silica monolith was developed as a solid-phase extraction sorbent for the extraction and separation of toxaphene congeners from soil extraction solutions, prior to their measurement by gas chromatography-mass spectroscopy. The silica monolith was characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption and Fourier transform infrared spectroscopy. The recovery parameters including type of eluent, eluent volume, flow rate and varying amounts of sorbent were systemically optimized. Our method has a low detection limit, and it was 1.64, 0.76, 1.03 and 2.28 ng/mL for hexachloro, heptachloro, octachloro and nonachloro toxaphene, respectively. The sorbent offered good linearity with coefficient of determination (r 2) >0.99, over a concentration range of 200–1000 ng/mL. The relative recoveries of toxaphene congeners ranged between 96.8 and 105.7 % with relative standard deviations (% RSD) below 5 %. The recoveries of toxaphene congeners were 99.9–104.0 % after using the sorbent five times, showing the excellent stability and reusability of prepared silica monolith sorbent.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu S, Gao L, Zheng M, Liu H, Zhang B, Liu L, Wang Y (2014) Talanta 118:210–216

    Article  Google Scholar 

  2. Vetter W, Klobes U, Luckas B (2001) Chemosphere 43:611–621

    Article  Google Scholar 

  3. Lau B, Weber D, Andrews P (1996) Chemosphere 32:1021–1041

    Article  Google Scholar 

  4. Fatoki OS, Awofolu RO (2003) J Chromatogr A 983:225–236

    Article  Google Scholar 

  5. Qiu C, Cai M (2010) J Chromatogr A 1217:1191–1202

    Article  Google Scholar 

  6. Gouteux B, Lebeuf M, Trottier S, Gagné JP (2002) Chemosphere 49:183–191

    Article  Google Scholar 

  7. Kucklick JR, Helm PA (2006) Anal Bioanal Chem 386:819–836

    Article  Google Scholar 

  8. Young JC, Freeman AD, Bruce RM, Williams D, Maruya K (2009) Ecotoxicol Environ Saf 72:162–172

    Article  Google Scholar 

  9. Guzzella L, Poma G, De Paolis A, Roscioli C, Viviano G (2011) Environ Pollut 159:2552–2564

    Article  Google Scholar 

  10. Korytár P, Leonards PEG, De Boer J, Brinkman UATh (2005) J Chromatogr A 1086:29–44

    Article  Google Scholar 

  11. Bordajandi LR, Ramos JJ, Sanz J, González MG, Ramos L (2008) J Chromatogr A 1186:312–324

    Article  Google Scholar 

  12. Kumar A, Malik AK, Picó Y (2010) Electrophoresis 31:2115–2125

    Article  Google Scholar 

  13. Kašička V (2014) Electrophoresis 35:69–95

    Article  Google Scholar 

  14. Poole CF, Gunatilleka AD, Sethuraman R (2000) J Chromatogr A 885:17–39

    Article  Google Scholar 

  15. Wang P, Zhang Q, Wang Y, Wang T, Li X, Ding L, Jiang G (2010) Anal Chim Acta 663:43–48

    Article  Google Scholar 

  16. Kažoka H (2002) J Chromatogr A 942:1–10

    Article  Google Scholar 

  17. Nema T, Chan ECY, Ho PC (2011) J Mass Spectrom 46:891–900

    Article  Google Scholar 

  18. Unger KK, Skudas R, Schulte MM (2008) J Chromatogr A 1184:393–415

    Article  Google Scholar 

  19. Pól J, Hyötyläinen T, Ranta-Aho O, Riekkola ML (2004) J Chromatogr A 1052:25–31

    Article  Google Scholar 

  20. Sandau CD, Sjödin A, Davis MD, Barr JR, Maggio VL, Waterman AL, Preston KE, Preau JL, Barr DB, Needham LL (2003) Anal Chem 75:71–77

    Article  Google Scholar 

  21. Bignardi C, Elviri L, Penna A, Careri M, Mangia A (2010) J Chromatogr A 1217:7579–7585

    Article  Google Scholar 

  22. Nema T, Chan EC, Ho PC (2011) J Sep Sci 34:1041–1046

    Article  Google Scholar 

  23. Saunders KC, Ghanem A, Wei BH, Hilder EF, Haddad PR (2009) Anal Chim Acta 652:22–31

    Article  Google Scholar 

  24. Lubda D, Cabrera K, Nakanishi K, Lindner W (2003) Anal Bioanal Chem 377:892–901

    Article  Google Scholar 

  25. Siouffi AM (2003) J Chromatogr A 1000:801–818

    Article  Google Scholar 

  26. Raynie DE (2010) Anal Chem 82:4911–4916

    Article  Google Scholar 

  27. Jandera P (2013) J Chromatogr A 1313:37–53

    Article  Google Scholar 

  28. Svec F (2006) J Chromatogr B 841:52–64

    Article  Google Scholar 

  29. Nema T, Chan ECY, Ho PC (2010) Talanta 82:488–494

    Article  Google Scholar 

  30. Cunliffe JM, Maloney TD (2007) J Sep Sci 30:3104–3109

    Article  Google Scholar 

  31. Luo Q, Shen Y, Hixson KK, Zhao R, Yang F, Moore RJ, Mottaz HM, Smith RD (2005) Anal Chem 77:5028–5035

    Article  Google Scholar 

  32. Aggarwal P, Tolley HD, Lee ML (2012) Monolithic bed structure for capillary liquid chromatography. J Chromatogr A 1219:1–14

    Article  Google Scholar 

  33. Alzahrani E, Welham K (2012) Analyst 137:4751–4759

    Article  Google Scholar 

  34. Shi ZG, Feng YQ, Xu L, Da SL, Ren YY (2004) Microporous Mesoporous Mater 68:55–5936

    Article  Google Scholar 

  35. Kim YS, Guo XF, Kim GJ (2010) Catal Today 150:91–99

    Article  Google Scholar 

  36. Thommes M (2010) Chem-Ing-Tech 82:1059–1073

    Article  Google Scholar 

  37. Ma X, Sun H, Yu P (2008) J Mater Sci 43:887–891

    Article  Google Scholar 

  38. Perry CC, Li X (1991) J Chem Soc Faraday Trans 87:761–766

    Article  Google Scholar 

  39. Péré E, Cardy H, Cairon O, Simon M, Lacombe S (2001) Vib Spectrosc 25(2):163–175

    Article  Google Scholar 

  40. Mansur HS, Vasconcelos WL, Lenza RS, Oréfice RL, Reis EF, Lobato ZP (2000) J Non-Cryst Solids 273:109–115

    Article  Google Scholar 

  41. McDonald RS (1958) J Phys Chem 62:1168–1178

    Article  Google Scholar 

  42. Lin J, Lin J, Lin X, Xie Z (2009) J Chromatogr A 1216:7728–7731

    Article  Google Scholar 

  43. Pryor G, Bingham L, Dickinson J, Rebert C, Howd R (1981) Neurotoxicol Teratol 4:71–7851

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support for this work from the National Natural Science Foundation of China (Nos. 21177066, 41225014 and 31370700), the Science and Technology Commission Foundation of Tianjin (No. 15JCZDJC40800) and Program for New Century Excellent Talents in University (NCET-12-0284). The authors also acknowledge support by the Brook Byers Institute for Sustainable Systems, Hightower Chair, and the Georgia Research Alliance at the Georgia Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Ma, John Crittenden or Yongsheng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhao, M., Zhao, F. et al. Application of silica-based monolith as solid-phase extraction sorbent for extracting toxaphene congeners in soil. J Sol-Gel Sci Technol 80, 87–95 (2016). https://doi.org/10.1007/s10971-016-4054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4054-8

Keywords

Navigation