Advertisement

Sensitive detection of uranium in water samples using differential pulse adsorptive stripping voltammetry on glassy carbon electrode

  • Zhiping Zhou
  • Yueming ZhouEmail author
  • Xizhen Liang
  • Fang Xie
  • Shujuan Liu
  • Jianguo MaEmail author
Article
  • 17 Downloads

Abstract

Direct and rapid determination of trace amounts of uranium in natural water remains a challenge. Herein, determination of uranium by differential pulse adsorptive stripping voltammetry (DPAdSV) in presence of cupferron and diphenylguanidine on glassy carbon electrode was investigated. Under optimized conditions, the DPAdSV peak current was proportional to the concentration of uranium in the range of 3–80 μg L−1 with the detection limit of 1.0 μg L−1 and a linear correlation coefficient of 0.999. The DPAdSV method based on GCE was successfully applied to direct determination of trace uranium in natural water samples.

Keywords

Uranium Differential pulse adsorptive stripping voltammetry Cupferron and diphenylguanidine Glassy carbon electrode 

Notes

Acknowledgements

This work is supported by National Natural Science-Foundation of China (No. 21667002, 21866001), Education Department of Jiangxi Province (No. GJJ150611, GJJ170435), Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation (No. JXMS201507) and Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

References

  1. 1.
    Liu C, Hsu PC, Xie J, Zhao J, Wu T, Wang H, Liu W, Zhang J, Chu S, Cui Y (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2(4):17007–17014CrossRefGoogle Scholar
  2. 2.
    Gupta R, Sundararajan M, Gamare JS (2017) Ruthenium nanoparticles mediated electrocatalytic reduction of UO2 2+ ions for its rapid and sensitive detection in natural waters. Anal Chem 89(15):8156–8161PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wu X, Huang Q, Mao Y, Wang X, Wang Y, Hu Q, Wang H, Wang X (2019) Sensors for determination of uranium: a review. TrAC Trends Anal Chem 118:89–111CrossRefGoogle Scholar
  4. 4.
    Tyszczuk-Rotko K, Domańska K, Czech B, Rotko M (2017) Development simple and sensitive voltammetric procedure for ultra-trace determination of U(VI). Talanta 165:474–481PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Wu P, Hwang K, Lan T, Lu Y (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc 135(14):5254–5257PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wang J, Setiadji R (1992) Selective determination of trace uranium by stripping voltammetry following adsorptive accumulation of the uranium—cupferron complex. Anal Chim Acta 264(2):205–211CrossRefGoogle Scholar
  7. 7.
    Liu J, Brown AK, Meng X, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci 104(7):2056PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Chen X, Zhang K, Yu H, Yu L, Ge H, Yue J, Hou T, Asiri AM, Marwani HM, Wang S (2018) Sensitive and selective fluorescence detection of aqueous uranyl ions using water-soluble CdTe quantum dots. J Radioanal Nucl Chem 316(3):1011–1019CrossRefGoogle Scholar
  9. 9.
    Farzin L, Shamsipur M, Sheibani S, Samandari L, Hatami Z (2019) A review on nanomaterial-based electrochemical, optical, photoacoustic and magnetoelastic methods for determination of uranyl cation. Microchim Acta 186(5):289–315CrossRefGoogle Scholar
  10. 10.
    Santos JS, Teixeira LSG, dos Santos WNL, Lemos VA, Godoy JM, Ferreira SLC (2010) Uranium determination using atomic spectrometric techniques: an overview. Anal Chim Acta 674(2):143–156PubMedCrossRefGoogle Scholar
  11. 11.
    Akl ZF (2018) Sensitive quantification of uranium using cloud point extraction coupled with inductively coupled plasma-optical emission spectrometry. J Radioanal Nucl Chem 315(1):21–28CrossRefGoogle Scholar
  12. 12.
    Arnason JG, Pellegri CN, Parsons PJ (2015) Determination of total uranium and uranium isotope ratios in human urine by ICP-MS:results of an interlaboratory study. J Anal At Spectrom 30(1):126–138CrossRefGoogle Scholar
  13. 13.
    Qiao J, Lagerkvist P, Rodushkin I, Salminen-Paatero S, Roos P, Lierhagen S, Jensen KA, Engstrom E, Lahaye Y, Skipperud L (2018) On the application of ICP-MS techniques for measuring uranium and plutonium: a Nordic inter-laboratory comparison exercise. J Radioanal Nucl Chem 315(3):565–580CrossRefGoogle Scholar
  14. 14.
    Chen X, He L, Wang Y, Liu B, Tang Y (2014) Trace analysis of uranyl ion (UO2 2+) in aqueous solution by fluorescence turn-on detection via aggregation induced emission enhancement effect. Anal Chim Acta 847:55–60PubMedCrossRefGoogle Scholar
  15. 15.
    Drobot B, Bauer A, Steudtner R, Tsushima S, Bok F, Patzschke M, Raff J, Brendler V (2016) Speciation studies of metals in trace concentrations: the mononuclear uranyl(VI) hydroxo complexes. Anal Chem 88(7):3548–3555PubMedCrossRefGoogle Scholar
  16. 16.
    Jiang M, Xiao X, He B, Liu Y, Hu N, Su C, Li Z, Liao L (2019) A europium (III) complex-based surface fluorescence sensor for the determination of uranium (VI). J Radioanal Nucl Chem 321(1):161–167CrossRefGoogle Scholar
  17. 17.
    Borák J, Slovák Z, Fischer J (1970) Verwendung mäßig dissoziierter komplexe bei spektralphotometrischen bestimmungen—II: Reaktionen von arsenazo iii mit uranyl und thorium(IV). Talanta 17(3):215–229CrossRefGoogle Scholar
  18. 18.
    Shamsipur M, Ghiasvand AR, Yamini Y (1999) Solid-phase extraction of ultratrace uranium(VI) in natural waters using octadecyl silica membrane disks modified by tri-n-octylphosphine oxide and its spectrophotometric determination with dibenzoylmethane. Anal Chem 71(21):4892–4895PubMedCrossRefGoogle Scholar
  19. 19.
    Jain VK, Handa A, Sait SS, Shrivastav P, Agrawal YK (2001) Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillinsemicarbazone. Anal Chim Acta 429(2):237–246CrossRefGoogle Scholar
  20. 20.
    Murthy RSS, Ryan DE (1983) Determination of arsenic, molybdenum, uranium, and vanadium in seawater by neutron activation analysis after preconcentration by colloid flotation. Anal Chem 55(4):682–684CrossRefGoogle Scholar
  21. 21.
    Hosseini MA, Ahmadi M (2017) Miniature neutron source reactors in medical research: achievements and challenges. J Radioanal Nucl Chem 314(3):1497–1504CrossRefGoogle Scholar
  22. 22.
    Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608(2):105–139PubMedCrossRefGoogle Scholar
  23. 23.
    Choi H-T, Kim T-R (2018) Necessity of management for minor earthquake to improve public acceptance of nuclear energy in South Korea. Nucl Eng Technol 50(3):494–503CrossRefGoogle Scholar
  24. 24.
    Becker A, Tobias H, Mandler D (2009) Electrochemical determination of uranyl ions using a self-assembled monolayer. Anal Chem 81(20):8627–8631PubMedCrossRefGoogle Scholar
  25. 25.
    Korolczuk M, Tyszczuk K, Grabarczyk M (2007) Determination of uranium by adsorptive stripping voltammetry at a lead film electrode. Talanta 72(3):957–961PubMedCrossRefGoogle Scholar
  26. 26.
    Sander S (1999) Simultaneous adsorptive stripping voltammetric determination of molybdenum(VI), uranium(VI), vanadium(V), and antimony(III). Anal Chim Acta 394(1):81–89CrossRefGoogle Scholar
  27. 27.
    Lin L, Thongngamdee S, Wang J, Lin Y, Sadik OA, Ly S-Y (2005) Adsorptive stripping voltammetric measurements of trace uranium at the bismuth film electrode. Anal Chim Acta 535(1):9–13CrossRefGoogle Scholar
  28. 28.
    Kefala G, Economou A, Voulgaropoulos A (2006) Adsorptive stripping voltammetric determination of trace uranium with a bismuth-film electrode based on the U(VI) → U(V) reduction step of the uranium–cupferron complex. Electroanalysis 18(3):223–230CrossRefGoogle Scholar
  29. 29.
    Tyszczuk-Rotko K, Jędruchniewicz K (2019) Ultrasensitive sensor for uranium monitoring in water ecosystems. J Electrochem Soc 166(10):B837–B844CrossRefGoogle Scholar
  30. 30.
    Paneli M, Ouguenoune H, David F, Bolyos A (1995) Study of the reduction mechanism and the adsorption properties of uranium (VI)-cupferron complexes using various electrochemical techniques. Anal Chim Acta 304(2):177–186CrossRefGoogle Scholar
  31. 31.
    Rashidi Nassab H, Bakhshi M, Amini MK (2014) Adsorptive cathodic stripping voltammetric determination of uranium(VI) in presence of N-phenylanthranilic acid. Electroanalysis 26(7):1598–1605CrossRefGoogle Scholar
  32. 32.
    Grabarczyk M, Koper A (2011) Adsorptive stripping voltammetry of uranium: elimination of interferences from surface active substances and application to the determination in natural water samples. Anal Methods 3(5):1046–1050CrossRefGoogle Scholar
  33. 33.
    Gholivand MB, Nassab HR, Fazeli H (2005) Cathodic adsorptive stripping voltammetric determination of uranium (VI) complexed with 2, 6-pyridinedicarboxylic acid. Talanta 65(1):62–66PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wang J, Wang J, Tian B, Jiang M (1997) Adsorptive stripping measurements of chromium and uranium at iridium-based mercury electrodes. Anal Chem 69(8):1657–1661CrossRefGoogle Scholar
  35. 35.
    Dimovasilis PA, Prodromidis MI (2011) An electrochemical sensor for trace uranium determination based on 6-O-palmitoyl-l-ascorbic acid-modified graphite electrodes. Sens Actuators B Chem 156(2):689–694CrossRefGoogle Scholar
  36. 36.
    Peled Y, Krent E, Tal N, Tobias H, Mandler D (2015) Electrochemical determination of low levels of uranyl by a vibrating gold microelectrode. Anal Chem 87(1):768–776PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Piech R, Baś B, Kubiak WW (2007) The cyclic renewable mercury film silver based electrode for determination of uranium(VI) traces using adsorptive stripping voltammetry. Electroanalysis 19(22):2342–2350CrossRefGoogle Scholar
  38. 38.
    Zhang L, Wang C-Z, Tang H-B, Wang L, Liu Y-S, Zhao Y-L, Chai Z-F, Shi W-Q (2015) Rapid determination of uranium in water samples by adsorptive cathodic stripping voltammetry using a tin-bismuth alloy electrode. Electrochim Acta 174:925–932CrossRefGoogle Scholar
  39. 39.
    Rashidi Nassab H, Souri A, Javadian A, Amini MK (2015) A novel mercury-free stripping voltammetric sensor for uranium based on electropolymerized N-phenylanthranilic acid film electrode. Sens Actuators Chem 215:360–367CrossRefGoogle Scholar
  40. 40.
    Gupta VK, Mangla R, Khurana U, Kumar P (1999) Determination of uranyl ions using poly(vinyl chloride) based 4-tert-butylcalix 6 arene membrane sensor. Electroanalysis 11(8):573–576CrossRefGoogle Scholar
  41. 41.
    Guney S, Guney O (2016) A novel electrochemical sensor for selective determination of uranyl ion based on imprinted polymer sol-gel modified carbon paste electrode. Sens Actuators B Chem 231:45–53CrossRefGoogle Scholar
  42. 42.
    Agarwal R, Sharma MK, Jayachandran K, Gamare JS, Noronha DM, Lohithakshan KV (2018) Poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate)-coated glassy-carbon electrode for simultaneous voltammetric determination of uranium and plutonium in fast-breeder-test-reactor fuel. Anal Chem 90(17):10187–10195PubMedCrossRefGoogle Scholar
  43. 43.
    Ziółkowski R, Górski Ł, Malinowska E (2017) Carboxylated graphene as a sensing material for electrochemical uranyl ion detection. Sens Actuators B Chem 238:540–547CrossRefGoogle Scholar
  44. 44.
    Pretty JR, Duckworth DC, Van Berkel GJ (1998) Electrochemical sample pretreatment coupled on-line with ICP-MS: analysis of uranium using an anodically conditioned glassy carbon working electrode. Anal Chem 70(6):1141–1148CrossRefGoogle Scholar
  45. 45.
    Golikand AN, Asgari M, Maragheh MG, Lohrasbi E (2009) Carbon nanotube-modified glassy carbon electrode for anodic stripping voltammetric detection of uranyle. J Appl Electrochem 39(1):65–70CrossRefGoogle Scholar
  46. 46.
    Ding M, Zhou Y, Liang X, Zou H, Wang Z, Wang M, Ma J (2016) An electrochemical sensor based on graphene/poly(brilliant cresyl blue) nanocomposite for determination of epinephrine. J Electroanal Chem 763:25–31CrossRefGoogle Scholar
  47. 47.
    Xie F, Zhou Y, Liang X, Zhou Z, Luo J, Liu S, Ma J (2019) Permselectivity of electrodeposited polydopamine/graphene composite for voltammetric determination of dopamine. Electroanalysis 31(9):1744–1751CrossRefGoogle Scholar
  48. 48.
    Jost CL, di Martos LM, Ferraz L, do Nascimento PC (2016) Sequential voltammetric determination of uranium, cadmium and lead by using the ex situ bismuth film electrode: application to phosphate fertilizers. Electroanalysis 28(2):287–295CrossRefGoogle Scholar
  49. 49.
    Yantasee W, Lin Y, Fryxell GE, Wang Z (2004) Carbon paste electrode modified with carbamoylphosphonic acid functionalized mesoporous silica: a new mercury-free sensor for uranium detection. Electroanalysis 16(10):870–873CrossRefGoogle Scholar
  50. 50.
    Sladkov V, Roques J (2016) Deactivation of lowest excited state of uranyl in the presence of acetate: a DFT exploration. J Photochem Photobiol A 322–323:10–15CrossRefGoogle Scholar
  51. 51.
    Koll A, Rospenk M, Bureiko SF, Bocharov VN (1996) Molecular structure and association of diphenylguanidine in solution. J Phys Org Chem 9(7):487–497CrossRefGoogle Scholar
  52. 52.
    Sun Y-C, Mierzwa J, Lan C-R (2000) Direct determination of molybdenum in seawater by adsorption cathodic stripping square-wave voltammetry. Talanta 52(3):417–424PubMedCrossRefGoogle Scholar
  53. 53.
    Grabarczyk M, Koper A (2011) How to determine uranium faster and cheaper by adsorptive stripping voltammetry in water samples containing surface active compounds. Electroanalysis 23(6):1442–1446CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Nuclear Resources and Environment, Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, College of Chemistry, Biology and Materials ScienceEast China University of TechnologyNanchangChina

Personalised recommendations