Skip to main content
Log in

Sensitive detection of uranium in water samples using differential pulse adsorptive stripping voltammetry on glassy carbon electrode

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Direct and rapid determination of trace amounts of uranium in natural water remains a challenge. Herein, determination of uranium by differential pulse adsorptive stripping voltammetry (DPAdSV) in presence of cupferron and diphenylguanidine on glassy carbon electrode was investigated. Under optimized conditions, the DPAdSV peak current was proportional to the concentration of uranium in the range of 3–80 μg L−1 with the detection limit of 1.0 μg L−1 and a linear correlation coefficient of 0.999. The DPAdSV method based on GCE was successfully applied to direct determination of trace uranium in natural water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu C, Hsu PC, Xie J, Zhao J, Wu T, Wang H, Liu W, Zhang J, Chu S, Cui Y (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2(4):17007–17014

    CAS  Google Scholar 

  2. Gupta R, Sundararajan M, Gamare JS (2017) Ruthenium nanoparticles mediated electrocatalytic reduction of UO2 2+ ions for its rapid and sensitive detection in natural waters. Anal Chem 89(15):8156–8161

    CAS  PubMed  Google Scholar 

  3. Wu X, Huang Q, Mao Y, Wang X, Wang Y, Hu Q, Wang H, Wang X (2019) Sensors for determination of uranium: a review. TrAC Trends Anal Chem 118:89–111

    CAS  Google Scholar 

  4. Tyszczuk-Rotko K, Domańska K, Czech B, Rotko M (2017) Development simple and sensitive voltammetric procedure for ultra-trace determination of U(VI). Talanta 165:474–481

    CAS  PubMed  Google Scholar 

  5. Wu P, Hwang K, Lan T, Lu Y (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc 135(14):5254–5257

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J, Setiadji R (1992) Selective determination of trace uranium by stripping voltammetry following adsorptive accumulation of the uranium—cupferron complex. Anal Chim Acta 264(2):205–211

    CAS  Google Scholar 

  7. Liu J, Brown AK, Meng X, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci 104(7):2056

    CAS  PubMed  Google Scholar 

  8. Chen X, Zhang K, Yu H, Yu L, Ge H, Yue J, Hou T, Asiri AM, Marwani HM, Wang S (2018) Sensitive and selective fluorescence detection of aqueous uranyl ions using water-soluble CdTe quantum dots. J Radioanal Nucl Chem 316(3):1011–1019

    CAS  Google Scholar 

  9. Farzin L, Shamsipur M, Sheibani S, Samandari L, Hatami Z (2019) A review on nanomaterial-based electrochemical, optical, photoacoustic and magnetoelastic methods for determination of uranyl cation. Microchim Acta 186(5):289–315

    Google Scholar 

  10. Santos JS, Teixeira LSG, dos Santos WNL, Lemos VA, Godoy JM, Ferreira SLC (2010) Uranium determination using atomic spectrometric techniques: an overview. Anal Chim Acta 674(2):143–156

    CAS  PubMed  Google Scholar 

  11. Akl ZF (2018) Sensitive quantification of uranium using cloud point extraction coupled with inductively coupled plasma-optical emission spectrometry. J Radioanal Nucl Chem 315(1):21–28

    CAS  Google Scholar 

  12. Arnason JG, Pellegri CN, Parsons PJ (2015) Determination of total uranium and uranium isotope ratios in human urine by ICP-MS:results of an interlaboratory study. J Anal At Spectrom 30(1):126–138

    CAS  Google Scholar 

  13. Qiao J, Lagerkvist P, Rodushkin I, Salminen-Paatero S, Roos P, Lierhagen S, Jensen KA, Engstrom E, Lahaye Y, Skipperud L (2018) On the application of ICP-MS techniques for measuring uranium and plutonium: a Nordic inter-laboratory comparison exercise. J Radioanal Nucl Chem 315(3):565–580

    CAS  Google Scholar 

  14. Chen X, He L, Wang Y, Liu B, Tang Y (2014) Trace analysis of uranyl ion (UO2 2+) in aqueous solution by fluorescence turn-on detection via aggregation induced emission enhancement effect. Anal Chim Acta 847:55–60

    CAS  PubMed  Google Scholar 

  15. Drobot B, Bauer A, Steudtner R, Tsushima S, Bok F, Patzschke M, Raff J, Brendler V (2016) Speciation studies of metals in trace concentrations: the mononuclear uranyl(VI) hydroxo complexes. Anal Chem 88(7):3548–3555

    CAS  PubMed  Google Scholar 

  16. Jiang M, Xiao X, He B, Liu Y, Hu N, Su C, Li Z, Liao L (2019) A europium (III) complex-based surface fluorescence sensor for the determination of uranium (VI). J Radioanal Nucl Chem 321(1):161–167

    CAS  Google Scholar 

  17. Borák J, Slovák Z, Fischer J (1970) Verwendung mäßig dissoziierter komplexe bei spektralphotometrischen bestimmungen—II: Reaktionen von arsenazo iii mit uranyl und thorium(IV). Talanta 17(3):215–229

    Google Scholar 

  18. Shamsipur M, Ghiasvand AR, Yamini Y (1999) Solid-phase extraction of ultratrace uranium(VI) in natural waters using octadecyl silica membrane disks modified by tri-n-octylphosphine oxide and its spectrophotometric determination with dibenzoylmethane. Anal Chem 71(21):4892–4895

    CAS  PubMed  Google Scholar 

  19. Jain VK, Handa A, Sait SS, Shrivastav P, Agrawal YK (2001) Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillinsemicarbazone. Anal Chim Acta 429(2):237–246

    CAS  Google Scholar 

  20. Murthy RSS, Ryan DE (1983) Determination of arsenic, molybdenum, uranium, and vanadium in seawater by neutron activation analysis after preconcentration by colloid flotation. Anal Chem 55(4):682–684

    CAS  Google Scholar 

  21. Hosseini MA, Ahmadi M (2017) Miniature neutron source reactors in medical research: achievements and challenges. J Radioanal Nucl Chem 314(3):1497–1504

    CAS  Google Scholar 

  22. Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608(2):105–139

    CAS  Google Scholar 

  23. Choi H-T, Kim T-R (2018) Necessity of management for minor earthquake to improve public acceptance of nuclear energy in South Korea. Nucl Eng Technol 50(3):494–503

    Google Scholar 

  24. Becker A, Tobias H, Mandler D (2009) Electrochemical determination of uranyl ions using a self-assembled monolayer. Anal Chem 81(20):8627–8631

    CAS  PubMed  Google Scholar 

  25. Korolczuk M, Tyszczuk K, Grabarczyk M (2007) Determination of uranium by adsorptive stripping voltammetry at a lead film electrode. Talanta 72(3):957–961

    CAS  PubMed  Google Scholar 

  26. Sander S (1999) Simultaneous adsorptive stripping voltammetric determination of molybdenum(VI), uranium(VI), vanadium(V), and antimony(III). Anal Chim Acta 394(1):81–89

    CAS  Google Scholar 

  27. Lin L, Thongngamdee S, Wang J, Lin Y, Sadik OA, Ly S-Y (2005) Adsorptive stripping voltammetric measurements of trace uranium at the bismuth film electrode. Anal Chim Acta 535(1):9–13

    CAS  Google Scholar 

  28. Kefala G, Economou A, Voulgaropoulos A (2006) Adsorptive stripping voltammetric determination of trace uranium with a bismuth-film electrode based on the U(VI) → U(V) reduction step of the uranium–cupferron complex. Electroanalysis 18(3):223–230

    CAS  Google Scholar 

  29. Tyszczuk-Rotko K, Jędruchniewicz K (2019) Ultrasensitive sensor for uranium monitoring in water ecosystems. J Electrochem Soc 166(10):B837–B844

    CAS  Google Scholar 

  30. Paneli M, Ouguenoune H, David F, Bolyos A (1995) Study of the reduction mechanism and the adsorption properties of uranium (VI)-cupferron complexes using various electrochemical techniques. Anal Chim Acta 304(2):177–186

    Google Scholar 

  31. Rashidi Nassab H, Bakhshi M, Amini MK (2014) Adsorptive cathodic stripping voltammetric determination of uranium(VI) in presence of N-phenylanthranilic acid. Electroanalysis 26(7):1598–1605

    CAS  Google Scholar 

  32. Grabarczyk M, Koper A (2011) Adsorptive stripping voltammetry of uranium: elimination of interferences from surface active substances and application to the determination in natural water samples. Anal Methods 3(5):1046–1050

    CAS  Google Scholar 

  33. Gholivand MB, Nassab HR, Fazeli H (2005) Cathodic adsorptive stripping voltammetric determination of uranium (VI) complexed with 2, 6-pyridinedicarboxylic acid. Talanta 65(1):62–66

    CAS  PubMed  Google Scholar 

  34. Wang J, Wang J, Tian B, Jiang M (1997) Adsorptive stripping measurements of chromium and uranium at iridium-based mercury electrodes. Anal Chem 69(8):1657–1661

    CAS  Google Scholar 

  35. Dimovasilis PA, Prodromidis MI (2011) An electrochemical sensor for trace uranium determination based on 6-O-palmitoyl-l-ascorbic acid-modified graphite electrodes. Sens Actuators B Chem 156(2):689–694

    CAS  Google Scholar 

  36. Peled Y, Krent E, Tal N, Tobias H, Mandler D (2015) Electrochemical determination of low levels of uranyl by a vibrating gold microelectrode. Anal Chem 87(1):768–776

    CAS  PubMed  Google Scholar 

  37. Piech R, Baś B, Kubiak WW (2007) The cyclic renewable mercury film silver based electrode for determination of uranium(VI) traces using adsorptive stripping voltammetry. Electroanalysis 19(22):2342–2350

    CAS  Google Scholar 

  38. Zhang L, Wang C-Z, Tang H-B, Wang L, Liu Y-S, Zhao Y-L, Chai Z-F, Shi W-Q (2015) Rapid determination of uranium in water samples by adsorptive cathodic stripping voltammetry using a tin-bismuth alloy electrode. Electrochim Acta 174:925–932

    CAS  Google Scholar 

  39. Rashidi Nassab H, Souri A, Javadian A, Amini MK (2015) A novel mercury-free stripping voltammetric sensor for uranium based on electropolymerized N-phenylanthranilic acid film electrode. Sens Actuators Chem 215:360–367

    CAS  Google Scholar 

  40. Gupta VK, Mangla R, Khurana U, Kumar P (1999) Determination of uranyl ions using poly(vinyl chloride) based 4-tert-butylcalix 6 arene membrane sensor. Electroanalysis 11(8):573–576

    CAS  Google Scholar 

  41. Guney S, Guney O (2016) A novel electrochemical sensor for selective determination of uranyl ion based on imprinted polymer sol-gel modified carbon paste electrode. Sens Actuators B Chem 231:45–53

    CAS  Google Scholar 

  42. Agarwal R, Sharma MK, Jayachandran K, Gamare JS, Noronha DM, Lohithakshan KV (2018) Poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate)-coated glassy-carbon electrode for simultaneous voltammetric determination of uranium and plutonium in fast-breeder-test-reactor fuel. Anal Chem 90(17):10187–10195

    CAS  PubMed  Google Scholar 

  43. Ziółkowski R, Górski Ł, Malinowska E (2017) Carboxylated graphene as a sensing material for electrochemical uranyl ion detection. Sens Actuators B Chem 238:540–547

    Google Scholar 

  44. Pretty JR, Duckworth DC, Van Berkel GJ (1998) Electrochemical sample pretreatment coupled on-line with ICP-MS: analysis of uranium using an anodically conditioned glassy carbon working electrode. Anal Chem 70(6):1141–1148

    CAS  Google Scholar 

  45. Golikand AN, Asgari M, Maragheh MG, Lohrasbi E (2009) Carbon nanotube-modified glassy carbon electrode for anodic stripping voltammetric detection of uranyle. J Appl Electrochem 39(1):65–70

    CAS  Google Scholar 

  46. Ding M, Zhou Y, Liang X, Zou H, Wang Z, Wang M, Ma J (2016) An electrochemical sensor based on graphene/poly(brilliant cresyl blue) nanocomposite for determination of epinephrine. J Electroanal Chem 763:25–31

    CAS  Google Scholar 

  47. Xie F, Zhou Y, Liang X, Zhou Z, Luo J, Liu S, Ma J (2019) Permselectivity of electrodeposited polydopamine/graphene composite for voltammetric determination of dopamine. Electroanalysis 31(9):1744–1751

    CAS  Google Scholar 

  48. Jost CL, di Martos LM, Ferraz L, do Nascimento PC (2016) Sequential voltammetric determination of uranium, cadmium and lead by using the ex situ bismuth film electrode: application to phosphate fertilizers. Electroanalysis 28(2):287–295

    CAS  Google Scholar 

  49. Yantasee W, Lin Y, Fryxell GE, Wang Z (2004) Carbon paste electrode modified with carbamoylphosphonic acid functionalized mesoporous silica: a new mercury-free sensor for uranium detection. Electroanalysis 16(10):870–873

    CAS  Google Scholar 

  50. Sladkov V, Roques J (2016) Deactivation of lowest excited state of uranyl in the presence of acetate: a DFT exploration. J Photochem Photobiol A 322–323:10–15

    Google Scholar 

  51. Koll A, Rospenk M, Bureiko SF, Bocharov VN (1996) Molecular structure and association of diphenylguanidine in solution. J Phys Org Chem 9(7):487–497

    CAS  Google Scholar 

  52. Sun Y-C, Mierzwa J, Lan C-R (2000) Direct determination of molybdenum in seawater by adsorption cathodic stripping square-wave voltammetry. Talanta 52(3):417–424

    CAS  PubMed  Google Scholar 

  53. Grabarczyk M, Koper A (2011) How to determine uranium faster and cheaper by adsorptive stripping voltammetry in water samples containing surface active compounds. Electroanalysis 23(6):1442–1446

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science-Foundation of China (No. 21667002, 21866001), Education Department of Jiangxi Province (No. GJJ150611, GJJ170435), Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation (No. JXMS201507) and Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueming Zhou or Jianguo Ma.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhou, Y., Liang, X. et al. Sensitive detection of uranium in water samples using differential pulse adsorptive stripping voltammetry on glassy carbon electrode. J Radioanal Nucl Chem 322, 2049–2056 (2019). https://doi.org/10.1007/s10967-019-06892-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06892-0

Keywords

Navigation