Skip to main content
Log in

Electrochemical sensor modified with poly(toluidine blue) for monitoring trace uranium in natural water by stripping voltammetry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A poly(toluidine blue) modified glassy carbon electrode (PTB/GCE) was prepared by two-step electropolymerization, and was used for the stripping voltammetric analysis of trace uranium for the first time. The results showed that the PTB modified electrode had higher sensitivity of uranium detection compared with the glassy carbon electrode, and the standard addition method was satisfactory for seawater, river water and tap water. The PTB/GCE can be used as a mercury-free electrode for the electrochemical detection of uranyl ions in the environmental water, which provides a new way for the rapid detection of trace uranium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Keener M, Hunt C, Carroll TG, Kampel V, Dobrovetsky R, Hayton TW, Menard G (2020) Redox-switchable carboranes for uranium capture and release. Nature 577:652–669. https://doi.org/10.1038/s41586-019-1926-4

    Article  CAS  PubMed  Google Scholar 

  2. Wu X, Huang Q, Mao Y, Wang X, Wang Y, Hu Q, Wang H, Wang X (2019) Sensors for determination of uranium: a review. TrAC Trends Anal Chem 118:89–111. https://doi.org/10.1016/j.trac.2019.04.026

    Article  CAS  Google Scholar 

  3. Zhou ZP, Zhou YM, Liang XZ, Luo JQ, Liu SJ, Ma JG (2022) Design and fabrication of a sensitive electrochemical sensor for uranyl ion monitoring in natural waters based on poly (brilliant cresyl blue). Microchim Acta 189:412. https://doi.org/10.1007/s00604-022-05485-1

    Article  CAS  Google Scholar 

  4. Tang XH, Zhou LM, Yu HL, Dai YM, Ouyang JB, Liu ZR, Wang Y, Le ZG, Adesina AA (2022) Nanoarchitectonics of poly(vinyl alcohol)/graphene oxide composite electrodes for highly efficient electrosorptive removal of U(VI) from aqueous solution. Sep Purif Technol 278:119604. https://doi.org/10.1016/j.seppur.2021.119604

    Article  CAS  Google Scholar 

  5. Tyszczuk-Rotko K, Domanska K, Czech B, Rotko M (2017) Development simple and sensitive voltammetric procedure for ultra-trace determination of U(VI). Talanta 165:474–481. https://doi.org/10.1016/j.talanta.2016.12.066

    Article  CAS  PubMed  Google Scholar 

  6. Claverie F, Hubert A, Berail S, Donard A, Pointurier F, Pecheyran C (2016) Improving precision and accuracy of isotope ratios from short transient laser ablation-multicollector-inductively coupled plasma mass spectrometry signals: application to micrometer-size uranium particles. Anal Chem 88:4375–4382. https://doi.org/10.1021/acs.analchem.5b04802

    Article  CAS  PubMed  Google Scholar 

  7. Liu C, Hu B, Shi J, Li J, Zhang X, Chen H (2011) Determination of uranium isotopic ratio (U-235/U-238) using extractive electrospray ionization tandem mass spectrometry. J Anal At Spectrom 26:2045–2051. https://doi.org/10.1039/c1ja10054h

    Article  CAS  Google Scholar 

  8. Hou XL, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139. https://doi.org/10.1016/j.aca.2007.12.012

    Article  CAS  PubMed  Google Scholar 

  9. Harris WE, Kolthoff IM (1945) The polarography of uranium. 1. Reduction in moderately acid solutions - polarographic determination of uranium. J Am Chem Soc 67:1484–1490. https://doi.org/10.1021/ja01225a023

    Article  CAS  Google Scholar 

  10. Wang J (2006) Analytical electrochemistry, 3rd edn. Wiley, Hoboken, New Jersey

    Book  Google Scholar 

  11. Ding Q, Li C, Wang HJ, Xu CL, Kuang H (2021) Electrochemical detection of heavy metal ions in water. Chem Commun 57:7215–7231. https://doi.org/10.1039/d1cc00983d

    Article  CAS  Google Scholar 

  12. Van Den Berg CMG, Huang ZQ (1984) Determination of uranium(VI) in sea-water by cathodic stripping voltammetry of complexes with catechol. Anal Chim Acta 164:209–222. https://doi.org/10.1016/s0003-2670(00)85632-9

    Article  Google Scholar 

  13. Hoyer B, Florence TM, Batley GE (1987) Application of polymer-coated glassy-carbon electrodes in anodic-stripping voltammetry. Anal Chem 59:1608–1614. https://doi.org/10.1021/ac00140a007

    Article  CAS  Google Scholar 

  14. Wang J, Lu JM, Anik U, Hocevar SB, Ogorevc B (2001) Insights into the anodic stripping voltammetric behavior of bismuth film electrodes. Anal Chim Acta 434:29–34. https://doi.org/10.1016/s0003-2670(01)00818-2

    Article  CAS  Google Scholar 

  15. Hocevar SB, Svancara I, Ogorevc B, Vytras K (2007) Antimony film electrode for electrochemical stripping analysis. Anal Chem 79:8639–8643. https://doi.org/10.1021/ac070478m

    Article  CAS  PubMed  Google Scholar 

  16. Lu YY, Liang XQ, Niyungeko C, Zhou JJ, Xu JM, Tian GM (2018) A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 178:324–338. https://doi.org/10.1016/j.talanta.2017.08.033

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Lu JM, Hocevar SB, Farias PAM, Ogorevc B (2000) Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal Chem 72:3218–3222. https://doi.org/10.1021/ac000108x

    Article  CAS  PubMed  Google Scholar 

  18. Paneli MG, Voulgaropoulos A (1993) Applications of adsorptive stripping voItammetry in the determination of trace and ultratrace metals. Electroanalysis 5:355–373. https://doi.org/10.1002/elan.1140050502

    Article  CAS  Google Scholar 

  19. Kalvoda R, Kopanica M (1989) Adsorptive stripping voltammetry in trace analysis. Pure Appl Chem 61:97–112. https://doi.org/10.1351/pac198961010097

    Article  CAS  Google Scholar 

  20. Wang J, Setiadji R (1992) Selective determination of trace uranium by stripping voltammetry following adsorptive accumulation of the uranium-cupferron complex. Anal Chim Acta 264:205–211. https://doi.org/10.1016/0003-2670(92)87007-8

    Article  CAS  Google Scholar 

  21. Peled Y, Krent E, Tal N, Tobias H, Mandler D (2015) Electrochemical determination of low levels of uranyl by a vibrating gold microelectrode. Anal Chem 87:768–776. https://doi.org/10.1021/ac503719r

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Z, Zhou Y, Liang X, Xie F, Liu S, Ma J (2019) Sensitive detection of uranium in water samples using differential pulse adsorptive stripping voltammetry on glassy carbon electrode. J Radioanal Nucl Chem 322:2049–2056. https://doi.org/10.1007/s10967-019-06892-0

    Article  CAS  Google Scholar 

  23. Zhang L, Wang CZ, Tang HB, Wang L, Liu YS, Zhao YL, Chai ZF, Shi WQ (2015) Rapid determination of uranium in water samples by adsorptive cathodic stripping voltammetry using a tin-bismuth alloy electrode. Electrochim Acta 174:925–932. https://doi.org/10.1016/j.electacta.2015.06.087

    Article  CAS  Google Scholar 

  24. Eswaran M, Tsai PC, Wu MT, Ponnusamy VK (2021) Novel nano-engineered environmental sensor based on polymelamine/graphitic-carbon nitride nanohybrid material for sensitive and simultaneous monitoring of toxic heavy metals. J Hazard Mater 418:126267. https://doi.org/10.1016/j.jhazmat.2021.126267

    Article  CAS  PubMed  Google Scholar 

  25. Nassab HR, Souri A, Javadian A, Amini MK (2015) A novel mercury-free stripping voltammetric sensor for uranium based on electropolymerized N-phenylanthranilic acid film electrode. Sens Actuators B-Chem 215:360–367. https://doi.org/10.1016/j.snb.2015.03.086

    Article  CAS  Google Scholar 

  26. Nguyen LD, Doan TCD, Huynh TM, Nguyen VNP, Dinh HH, Dang DMT, Dang CM (2021) An electrochemical sensor based on polyvinyl alcohol/chitosan-thermally reduced graphene composite modified glassy carbon electrode for sensitive voltammetric detection of lead. Sens Actuators B-Chem 345:130443. https://doi.org/10.1016/j.snb.2021.130443

    Article  CAS  Google Scholar 

  27. Xie F, Zhou Y, Liang X, Wu K, Zhou Z, Bao M, Zhang J, Luo J, Liu S, Ma J (2021) Evaluation of permselective polydopamine/rGO electrodeposited composite films for simultaneous voltammetric determination of acetaminophen and dopamine. J Electrochem Soc 168:077514. https://doi.org/10.1149/1945-7111/ac14af

    Article  CAS  Google Scholar 

  28. Xie F, Zhou Y, Liang X, Zhou Z, Luo J, Liu S, Ma J (2019) Permselectivity of electrodeposited polydopamine/graphene composite for voltammetric determination of dopamine. Electroanalysis 31:1744–1751. https://doi.org/10.1002/elan.201900062

    Article  CAS  Google Scholar 

  29. Aragay G, Pons J, Merkoci A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111:3433–3458. https://doi.org/10.1021/cr100383r

    Article  CAS  PubMed  Google Scholar 

  30. Zhou DM, Sun JJ, Chen HY, Fang HQ (1998) Electrochemical polymerization of toluidine blue and its application for the amperometric determination of beta-d-glucose. Electrochim Acta 43:1803–1809. https://doi.org/10.1016/s0013-4686(97)00297-1

    Article  CAS  Google Scholar 

  31. Wang Y, Hu S (2006) A novel nitric oxide biosensor based on electropolymerization poly(toluidine blue) film electrode and its application to nitric oxide released in liver homogenate. Biosens Bioelectron 22:10–17. https://doi.org/10.1016/j.bios.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  32. Karyakin AA, Karyakina EE, Schmidt HL (1999) Electropolymerized azines: a new group of electroactive polymers. Electroanalysis 11:149–155. https://doi.org/10.1002/(sici)1521-4109(199903)11:3%3c149::aid-elan149%3e3.0.co;2-g

    Article  CAS  Google Scholar 

  33. Shavokshina VA, Komkova MA, Aparin IO, Zatsepin TS, Karyakin AA, Andreev EA (2021) Improved electroactivity of redox probes onto electropolymerized azidomethyl-PEDOT: enabling click chemistry for advanced (Bio)sensors. ACS Appl Polym Mater 3:1518–1524. https://doi.org/10.1021/acsapm.0c01371

    Article  CAS  Google Scholar 

  34. Zhou Z, Zhou Y, Liang X, Luo J, Liu S, Ma J (2022) Electrochemical sensor for uranium monitoring in natural water based on poly Nile blue modified glassy carbon electrode. J Solid State Electrochem 26:1139–1149. https://doi.org/10.1007/s10008-021-05102-w

    Article  CAS  Google Scholar 

  35. Cai CX, Xue KH (1998) Electrochemical polymerization of toluidine blue o and its electrocatalytic activity toward NADH oxidation. Talanta 47:1107–1119. https://doi.org/10.1016/s0039-9140(98)00190-8

    Article  CAS  PubMed  Google Scholar 

  36. Ding M, Zhou Y, Liang X, Zou H, Wang Z, Wang M, Ma J (2016) An electrochemical sensor based on graphene/poly(brilliant cresyl blue) nanocomposite for determination of epinephrine. J Electroanal Chem 763:25–31. https://doi.org/10.1016/j.jelechem.2015.12.040

    Article  CAS  Google Scholar 

  37. Agarwal R, Sharma MK, Jayachandran K, Gamare JS, Noronha DM, Lohithakshan KV (2018) Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)-coated glassy-carbon electrode for simultaneous voltammetric determination of uranium and plutonium in fast-breeder-test reactor fuel. Anal Chem 90:10187–10195. https://doi.org/10.1021/acs.analchem.8b00769

    Article  CAS  PubMed  Google Scholar 

  38. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  39. Teng Y, Fan LM, Dai YL, Zhong M, Lu XJ, Kan XW (2015) Electrochemical sensor for paracetamol recognition and detection based on catalytic and imprinted composite film. Biosens Bioelectron 71:137–142. https://doi.org/10.1016/j.bios.2015.04.037

    Article  CAS  PubMed  Google Scholar 

  40. Lin L, Thongngamdee S, Wang J, Lin YH, Sadik OA, Ly SY (2005) Adsorptive stripping voltammetric measurements of trace uranium at the bismuth film electrode. Anal Chim Acta 535:9–13. https://doi.org/10.1016/j.aca.2004.12.003

    Article  CAS  Google Scholar 

  41. Tyszczuk-Rotko K, Jedruchniewicz K (2019) Ultrasensitive sensor for uranium monitoring in water ecosystems. J Electrochem Soc 166:B837–B844. https://doi.org/10.1149/2.1371910jes

    Article  CAS  Google Scholar 

  42. Geca I, Ochab M, Korolczuk M (2020) Application of a solid lead microelectrode as a new voltammetric sensor for adsorptive stripping voltammetry of U(VI). Talanta 207:120309. https://doi.org/10.1016/j.talanta.2019.120309

    Article  CAS  PubMed  Google Scholar 

  43. Grabarczyk M, Koper A (2011) Adsorptive stripping voltammetry of uranium: elimination of interferences from surface active substances and application to the determination in natural water samples. Anal Methods 3:1046–1050. https://doi.org/10.1039/c1ay05043e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 22068002, 22166002, 22176032), the Key Project of Natural Science Foundation of Jiangxi (No. 20212ACB203002), and the State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (No. 2020NRE29).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueming Zhou or Limin Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Zhou, Y., Zhou, Z. et al. Electrochemical sensor modified with poly(toluidine blue) for monitoring trace uranium in natural water by stripping voltammetry. J Radioanal Nucl Chem 332, 3893–3901 (2023). https://doi.org/10.1007/s10967-023-09121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09121-x

Keywords

Navigation