Skip to main content
Log in

Synthesis of three-dimensional flower-like α-Fe2O3 microspheres for high efficient removal of radiocobalt

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, three-dimensional flower-like α-Fe2O3 (F-Fe2O3) microspheres were synthesized by a facile chemical bath method and characterized by XRD, FE-SEM, TEM and BET specific surface area. The maximum sorption capacity of 60Co(II) on F-Fe2O3 reached to 6.78 × 10−4 mol/g at 298 K and pH 6.5. The pH and ionic strength experiments implied that the removal of F-Fe2O3 towards 60Co(II) is dominated by ion exchange and/or outer-sphere surface complexation at pH < 7.5, and by inner-sphere surface complexation at pH > 7.5. In conclusion, the F-Fe2O3 microspheres could be applied as cost-effective materials for the removal of 60Co(II) from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kudesia VP (1990) Water pollution. Pregatiprakashan Publications, Meerut

    Google Scholar 

  2. Jiang ZT, Yu JC, Liu HY (2005) Simultaneous determination of cobalt, copper and zinc by energy dispersive X-ray fluorescence spectrometry after preconcentration on PAR-loaded ion-exchange resin. Anal Sci 21(7):851–854

    Article  CAS  Google Scholar 

  3. Gal J, Hursthouse A, Tatner P, Stewart F, Welton R (2008) Cobalt and secondary poisoning in the terrestrial food chain: data review and research gaps to support risk assessment. Environ Int 34(6):821–838

    Article  CAS  Google Scholar 

  4. Gupta N, Kushwaha AK, Chattopadhyaya MC (2012) Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. J Taiwan Inst Chem Eng 43(1):125–131

    CAS  Google Scholar 

  5. Lukashev RV, Zanaveskin KL, Kuz’min AG (2014) Sorption of Co(II) ions onto mechanically activated γ-Fe2O3 powders. Russ J Appl Chem 87(9):1359–1363

    Article  CAS  Google Scholar 

  6. El Hassan N, Kaydouh MN, Geagea H, El Zein H, Jabbour K, Casale S, El Zakhem H, Massiani P (2016) Low temperature dry reforming of methane on rhodium and cobalt based catalysts: active phase stabilization by confinement in mesoporous SBA-15. Appl Catal A 520:114–121

    Article  CAS  Google Scholar 

  7. Ghaly M, El-Dars FMSE, Hegazy MM, Abdel Rahman RO (2016) Evaluation of synthetic Birnessite utilization as a sorbent for cobalt and strontium removal from aqueous solution. Chem Eng J 284:1373–1385

    Article  CAS  Google Scholar 

  8. Handley-Sidhu S, Mullan TK, Grail Q, Albadarneh M, Ohnuki T, Macaskie LE (2016) Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite. Sci Rep 6:23361

    Article  CAS  Google Scholar 

  9. Hossein Beyki M, Shemirani F, Shirkhodaie M (2016) Aqueous Co(II) adsorption using 8-hydroxyquinoline anchored gamma-Fe2O3@chitosan with Co(II) as imprinted ions. Int J Biol Macromol 87:375–384

    Article  CAS  Google Scholar 

  10. Ivanets AI, Shashkova IL, Kitikova NV, Morozov Y (2016) The kinetic studies of the cobalt ion removal from aqueous solutions by dolomite-based sorbent. Int J Environ Sci Technol 13(11):2561–2568

    Article  CAS  Google Scholar 

  11. Karimi MA, Ghasemi MH, Aghagoli MJ, Beyki MH (2016) Preconcentration of cobalt ions by a melamine-modified cellulose@MWCNT nanohybrid. Microchim Acta 183(11):2949–2955

    Article  CAS  Google Scholar 

  12. Li S, Wang X, Huang Z, Du L, Zhang D, Tan Z, Fu Y, Wang X (2016) Sorption–desorption hysteresis of uranium(VI) on/from GMZ bentonite. J Radioanal Nucl Chem 310(2):671–678

    Article  CAS  Google Scholar 

  13. Metwally SS, Ayoub RR (2016) Modification of natural bentonite using a chelating agent for sorption of 60Co radionuclide from aqueous solution. Appl Clay Sci 126:33–40

    Article  CAS  Google Scholar 

  14. Mužek MN, Svilović S, Zelić J (2016) Kinetic studies of cobalt ion removal from aqueous solutions using fly ash-based geopolymer and zeolite NaX as sorbents. Sep Sci Technol 51(18):2868–2875

    Article  Google Scholar 

  15. Pipíška M, Richveisová BM, Frišták V, Horník M, Remenárová L, Stiller R, Soja G (2016) Sorption separation of cobalt and cadmium by straw-derived biochar: a radiometric study. J Radioanal Nucl Chem 311(1):85–97

    Google Scholar 

  16. Wang J, Chen Z, Chen W, Li Y, Wu Y, Hu J, Alsaedi A, Alharbi NS, Dong J, Linghu W (2016) Effect of pH, ionic strength, humic substances and temperature on the sorption of Th(IV) onto NKF-6 zeolite. J Radioanal Nucl Chem 310(2):597–609

    Article  CAS  Google Scholar 

  17. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M, Cheng X (2016) Competitive adsorption of strontium and cobalt onto tin antimonate. Chem Eng J 285:679–689

    Article  CAS  Google Scholar 

  18. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M, Cheng X (2016) Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate. Chem Eng J 302:733–743

    Article  CAS  Google Scholar 

  19. Ivanets AI, Srivastava V, Kitikova NV, Shashkova IL, Sillanpaa M (2017) Kinetic and thermodynamic studies of the Co(II) and Ni(II) ions removal from aqueous solutions by Ca-Mg phosphates. Chemosphere 171:348–354

    Article  CAS  Google Scholar 

  20. Luo W, Bai Z, Zhu Y (2017) Comparison of Co(ii) adsorption by a crosslinked carboxymethyl chitosan hydrogel and resin: behaviour and mechanism. New J Chem 41(9):3487–3497

    Article  CAS  Google Scholar 

  21. Jain G, Balasubramanian M, Xu JJ (2006) Structural studies of lithium intercalation in a nanocrystalline α-Fe2O3 compound. Chem Mater 18(2):423–434

    Article  CAS  Google Scholar 

  22. Tang W, Li Q, Gao S, Shang JK (2011) Arsenic (III, V) removal from aqueous solution by ultrafine alpha-Fe2O3 nanoparticles synthesized from solvent thermal method. J Hazard Mater 192(1):131–138

    CAS  Google Scholar 

  23. Adegoke HI, AmooAdekola F, Fatoki OS, Ximba BJ (2013) Adsorption of Cr(VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies. Korean J Chem Eng 31(1):142–154

    Article  Google Scholar 

  24. Jordan N, Ritter A, Scheinost AC, Weiss S, Schild D, Hubner R (2014) Selenium(IV) uptake by maghemite (gamma-Fe2O3). Environ Sci Technol 48(3):1665–1674

    Article  CAS  Google Scholar 

  25. Debnath A, Deb K, Chattopadhyay KK, Saha B (2015) Methyl orange adsorption onto simple chemical route synthesized crystalline α-Fe2O3 nanoparticles: kinetic, equilibrium isotherm, and neural network modeling. Desalin Water Treat 57(29):13549–13560

    Article  Google Scholar 

  26. Liang H, Liu K, Ni Y (2017) Synthesis of mesoporous α-Fe2O3 using cellulose nanocrystals as template and its use for the removal of phosphate from wastewater. J Taiwan Inst Chem Eng 71:474–479

    Article  CAS  Google Scholar 

  27. Liu Z, Yu R, Dong Y, Li W, Lv B (2017) The adsorption behavior and mechanism of Cr(VI) on 3D hierarchical α-Fe2O3 structures exposed by (001) and non-(001) planes. Chem Eng J 309:815–823

    Article  CAS  Google Scholar 

  28. Rajput S, Singh LP, Pittman CU Jr, Mohan D (2017) Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (gamma-Fe2O3) nanoparticles synthesized by flame spray pyrolysis (FSP). J Colloid Interface Sci 492:176–190

    Article  CAS  Google Scholar 

  29. Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32(5):435–445

    Article  CAS  Google Scholar 

  30. Catalette H, Dumonceau J, Ollar PJ (1998) Sorption of cesium, barium and europium on magnetite. J Contam Hydrol 35:151–159

    Article  CAS  Google Scholar 

  31. Vimala R, Das N (2009) Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. J Hazard Mater 168(1):376–382

    Article  CAS  Google Scholar 

  32. Cai YW, Wu CF, Liu ZY, Zhang LJ, Chen LH, Wang JQ, Wang XK, Yang ST, Wang SA (2017) Fabrication of phosphorylated graphene oxide-chitosan composite for highly effective and selective capture of U(VI). Environ Sci 4:1876–1886

    CAS  Google Scholar 

  33. Yuan F, Wu CF, Cai YW, Zhang LJ, Wang JQ, Chen LH, Wang XK, Yang ST, Wang SA (2017) Synthesis of phytic acid-decorated titanate nanotubes for high efficient and high selective removal of U(VI). Chem Eng J 322:353–365

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from National Natural Science Foundation of China (21677045, 21203050 and 11647119) and Anhui Provincial Natural Science Foundation (1508085QF123) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Ling, Q., Zhou, Y. et al. Synthesis of three-dimensional flower-like α-Fe2O3 microspheres for high efficient removal of radiocobalt. J Radioanal Nucl Chem 314, 1897–1904 (2017). https://doi.org/10.1007/s10967-017-5534-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5534-1

Keywords

Navigation