Skip to main content
Log in

Factors controlling temporal variability of gamma radionuclides and major-ions of bulk deposition in Málaga

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Concentrations of both gamma radionuclides as well as major ions in bulk deposition samples were measured monthly from January 2005–December 2013 and January 2007–December 2013 respectively. The gamma radionuclides present are 7Be, 210Pb and 40K (50 % of the samples), while ions in bulk deposition were dominated by Ca2+, Cl, \({\text{SO}}_{4}^{2 - }\) and Na+. Principal component analysis, enrichment factor and source assessment were performed to identify possible common sources. The time series of radionuclides and ions showed seasonal pattern and dependence mainly with number of African outbreaks, temperature and rain. Relatively poor correlations were observed between radionuclides and major ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balestrini R, Galli L, Tartari G (2000) Atmos Environ 34:1455–1470

    Article  CAS  Google Scholar 

  2. Yamamoto M, Sagaguchi A, Sasaki K, Hirose K, Igarashi Y, Kim CK (2006), J Environ Radioact 86:110–131

    Article  CAS  Google Scholar 

  3. Hirose K, Honda T, Yagishita S, Igarashi Y, Aoyama M (2004) Atmos Environ 38:6601–6608

    Article  CAS  Google Scholar 

  4. Lozano RL, San Miguel EG, Bolívar JP, Baskaran M (2011) J Geophys Res 116:D18213

    Article  Google Scholar 

  5. Carratalá A, Bellot J, Gómez A, Millan M (1996) In: Guerzoni S, Chester R (eds) Kluwwer Academic Publishers. Dordrecht, London

    Google Scholar 

  6. Avila A, Rodá F (2002) Atmos Environ 36:2881–2890

    Article  CAS  Google Scholar 

  7. Rodá F, Bellot J, Avila A, Escarre A, Piñol J, Terradas J (1993) Water Air Soil Pollut 66:277–288

    Google Scholar 

  8. Smirnioudi VN, Siskos PA (1992) Atmos Environ Part B Urban Atmos 26:483–490

    Article  Google Scholar 

  9. Ugur A, Ozden B, Filizok I (2011) Atmos Environ 45:4809–4813

    Article  CAS  Google Scholar 

  10. Akkoyunlu BO, Tayanç M (2003) Atmos Environ 37:3571–3579

    Article  CAS  Google Scholar 

  11. Vet R, Artz RS, Carou S, Shaw M, Ro CU, Aas W, Baker A, Bowersox VC, Dentener F, Galy-Lacaux C, Hou A, Pienaar JJ, Gillett R, Forti MC, Gromov S, Hara H, Khodzher T, Mahowald NM, Nickovic S, Rao PSP, Reid NW (2014) Atmos Environ 93:3–100

    Article  CAS  Google Scholar 

  12. Zunckel M, Saizar C, Zarauz J (2003) Atmos Environ 37:1601–1611

    Article  CAS  Google Scholar 

  13. Sanets EV, Chuduk NC (2005) Atmos Res 77:88–89

    Article  CAS  Google Scholar 

  14. Zhang GS, Zhang J, Liu SM (2007) Atmos Res 85:84–97

    Article  CAS  Google Scholar 

  15. Calvo AI, Olmo FJ, Lyamani H, Alados-Arboledas L, Castro A, Fenández-Raga M, Fraile R (2010) Atmos Res 96:408–420

    Article  CAS  Google Scholar 

  16. Simpson D, Fagerli H, Hellsten S, Knulst JC, Westling O (2006) Biogeosciences 3:337–355

    Article  CAS  Google Scholar 

  17. Dibb JE (1989) J Geophys Res 94:2261–2265

    Article  CAS  Google Scholar 

  18. Kim SK, Hong GH, Baskaran M, Park KM, Chung CS, Kim KH (1998) Yellow Coastal 4:58–68

    Google Scholar 

  19. Brost RA, Feichter T, Heimann M (1991) J Geophys Res 96:22423–22445

    Article  Google Scholar 

  20. Rehfeld S, Heimann M (1995) J Geophys Res 100(D12):26141–26161

    Article  Google Scholar 

  21. Hernández F, Hernández-Armas J, Catalán A, Fernández-Aldecoa JC, Karlson L (2005) Atmos Environ 39:4057–4066

    Article  Google Scholar 

  22. Dueñas C, Fernández MC, Gordo E, Cañete S, Pérez M (2011) Atmos Environ 45:1015–1024

    Article  Google Scholar 

  23. Igarashi Y, Hirose K, Otsuji-Hatori M (1998) J Atmos Chem 29:217–231

    Article  CAS  Google Scholar 

  24. Kusano Y, Momoshima N (2002) In: Miura, T (ed.) Proceedings of the third workshop on environmental radioactivity, vol 33, Japan

  25. Mann M, Beer J, Steinhilber F, Abreu JA, Christi M, Kubik PW (2011) Atmos Environ 45:2836–2841

    Article  CAS  Google Scholar 

  26. Caillet S, Arpagaus P, Monna F, Dominik J (2001) J Environ Radioact 53:241–246

    Article  CAS  Google Scholar 

  27. Dueñas C, Fernández MC, Gordo E, Cañete S, Pérez M (2012) Atmos Environ 62:1–8

    Article  Google Scholar 

  28. Querol X, Pey J, Pandolfi M, Alastuey A, Cusak M, Pérez N, Moreno T, Viana M, Mihapoulos M, Kallos G, Kleanthous S (2009) Atmos Environ 43:4266–4277

    Article  CAS  Google Scholar 

  29. Cabello M, Orza JA, Barrero A, Gordo E, Berasaluce A, Cantón L, Dueñas C, Fernández MC, Perez M (2012) J Geophy Res 117 (D11204). doi:10.1029/2012Jd017513

  30. Dueñas C, Fernández MC, Liger E, Carretero JE (1999) Atmos Environ 33(22):3705–3715

    Article  Google Scholar 

  31. Dueñas C, Fernández MC, Carretero J, Liger E, Cañete S (2004) Atmos Environ 38:1291–1301

    Article  Google Scholar 

  32. Zhang M, Wang S, Wu F, Yuan X, Zhang Y (2007) Atmos Res 84:311–322

    Article  CAS  Google Scholar 

  33. Bayraktar H, Turalioglu FS (2005) Chemosfere 59:1537–1546

    Article  CAS  Google Scholar 

  34. Huang Y, Yangling W, Zhang L (2008) Atmos Environ 42:3740–3750

    Article  CAS  Google Scholar 

  35. Rodríguez S, Querol X, Alastuey A, Kallos G, Kakaliagou O (2001) Atmos Environ 35:2433–2447

    Article  Google Scholar 

  36. Prospero JM, Ginous P, Torres O, Niclolson SE, Gill TE (2002) Rev Geophys 40(1): 2–1:2–31

  37. Escudero M, Castillo S, Querol X, Avila A, Alarcon M, Viana M, Alastuey A, Cuevas E, Rodríguez S (2005) J Geophys Res, 110 (D18s08)

  38. Guerzoni S, Molinaroli E, Chester R (1997) Deep Sea Res. Part II 44:631–654

    Article  CAS  Google Scholar 

  39. Baskaran M, Coleman CH, Santschi PH (1993) J Geophys Res 98:20555–20571

    Article  Google Scholar 

  40. Kim G, Hussain N, Scudlark JR, Churh TM (2000) J Atmos Chem 36:65–79

    Article  CAS  Google Scholar 

  41. Dueñas C, Fernandez MC, Carretero JE, Liger E, Cañete S (2003) J Geophys Res. doi:10.1029/2002JD002940

    Google Scholar 

  42. Dueñas C, Fernández MC, Cañete S, Pérez M (2009) Atmos Res 92:49–57

    Article  Google Scholar 

  43. Piñero F, Ferro MA, Azahra M (2012) Atmos Environ 47:84–91

    Article  Google Scholar 

  44. Huch CA, Su CC, Shiau LJ (2006) J Geophys Res 111:D16304. doi:10.1029/2006JD007180

    Article  Google Scholar 

  45. Zeng, Y., Bartholomeus, H.M., De Bruin, S., Espema, G.F., Clevers, J.G.P.W. (2003) Presented at the 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching

  46. McNeary D, Baskaran M (2003) Depositional characteristics of 7Be and 210Pb in southeastern Michigan. J Geophys Res 108(D7):4210

    Article  Google Scholar 

  47. Shakurai H (2006) Radioisotopes 55:501–503

    Article  Google Scholar 

  48. Todd JF, Wong GT, Olsen CR, Larsen IL (1989) J Geophys Res 94:11106–11116

    Article  Google Scholar 

  49. Benítez-Nelson CR, Buesseler KO (1999) J Geophys Res 104:11745–11754

    Article  Google Scholar 

  50. Samara C, Tsitouridou R (2000) Water Air Soil Poll 120:71–88

    Article  CAS  Google Scholar 

  51. Huebert BJ, Zhuang L, Howell S, Noone K, Noone B (1996) J Geophys Res 101:4413–4423

    Article  CAS  Google Scholar 

  52. Baldasano JM, Pay MT, Jorba O, Jiménez-Guerrero P (2011) Sci Total Environ 409:2163–2178. doi:10.1016/j.scitotenv.2011.01.041

    Article  CAS  Google Scholar 

  53. Safai PD, Rao PSP, Momin GA, Ali K, Chate DM, Praveen PS (2004) Atmos Environ 38:1705–1714

    Article  CAS  Google Scholar 

  54. Gordo E (2014) PhD Thesis.

Download references

Acknowledgments

This work has been supported by the Consejo de Seguridad Nuclear (CSN). We gratefully acknowledge the Spanish Meteorological Agency for providing meteorological data. The authors also acknowledge the comments by anonymous referees which helped to improve the article substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dueñas.

Appendix

Appendix

Since measurements of radionuclides in bulk deposition in Málaga are available, artificial radionuclides in bulk deposition samples have never been detected until the accident at the Fukushima Dai-ichi Nuclear Power Plant in March 2011. The radioiodines and radiocaesiums emitted into the atmosphere from the Fukushima Dai-ichi reactors were partially transported across the Pacific Ocean. The radioactive plume first reached North America, and then moved towards the Atlantic Ocean before finally reaching Málaga 31st March [54]. 131I is detected in the sample deposition of March (284 ± 46) mBq L−1, while 134Cs and 137Cs are measured in the sample deposition of April 2011(28.7 ± 4.8 and 36.2 ± 9.4) mBq L−1 respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dueñas, C., Fernández, M.C., Gordo, E. et al. Factors controlling temporal variability of gamma radionuclides and major-ions of bulk deposition in Málaga. J Radioanal Nucl Chem 309, 955–965 (2016). https://doi.org/10.1007/s10967-016-4724-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4724-6

Keywords

Navigation