Skip to main content
Log in

Distribution of gamma-ray radionuclides in surface sediments of the Kongsfjorden, Arctic: Implications for sediment provenance

  • Articles
  • Marine Chemistry
  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The Kongsfjorden is highly sensitive region to climate variability, however, the study of gamma-ray radionuclides in related areas is relatively scarce. In this study, the grain size, total organic carbon (TOC), 13Corg isotopes, and specific activities of seven gamma nuclides were analysed in surface sediments of the Kongsfjorden in the Arctic during the summer of 2017. The specific activities of 210Pbex, 137Cs, 238U, 226Ra, 228Ra, 228Th, and 40K were 12–256 Bq/kg, 0–3.8 Bq/kg, 25–42 Bq/kg, 24–38 Bq/kg, 22–40 Bq/kg, 22–40 Bq/kg, and 354–738 Bq/kg, respectively, with average values of (121±94) Bq/kg, (2.0±1.2) Bq/kg, (34±6) Bq/kg, (32±4) Bq/kg, (32±6) Bq/kg, (33±6) Bq/kg, and (611±119) Bq/kg. This study observed a significant positive correlation (r=0.845, p<0.05) between TOC and 210Pbex, highlighting the strong influence of organic matter on the distribution of 210Pbex. The boundary scavenging of 210Pb from the open sea contributed 27.5%–46.2% to the total 210Pbex in the sediments of the outer Kongsfjorden. The grain size was an important factor affecting the activity distribution of several radionuclides (238U, 228Ra, 228Th, 226Ra, and 40K). The specific activity of 137Cs indicated the transport of terrestrial materials from the exposed area of the Kongsfjorden. The sediments in the Kongsfjorden were derived from various material contributions of glacial meltwater debris, glacial rivers, bare soil, atmospheric deposition, and marine sources. This study explains the source of the Kongsfjorden sediment and the distribution characteristics of radionuclides, and illustrateas the main factors affecting the distribution of radionuclides, which provides a reference for the behavior of polar radionuclides in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliani S, Bartholini G, Degl’innocenti F, et al. 2004. Multidisciplinary investigations in the marine environment of the inner Kongsfiord, Svalbard islands (September 2000 and 2001). Chemistry and Ecology, 20(S1): S19–S28

    Article  Google Scholar 

  • Appleby P G. 2004. Environmental change and atmospheric contamination on svalbard: sediment chronology. Journal of Paleolimnology, 31(4): 433–443, doi: https://doi.org/10.1023/B:JOPL.0000022545.73163.ed

    Article  Google Scholar 

  • Baskaran M. 2011. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. Journal of Environmental Radioactivity, 102(5): 500–513, doi: https://doi.org/10.1016/j.jenvrad.2010.10.007

    Article  Google Scholar 

  • Berge J, Heggland K, Lønne O J, et al. 2015. First records of Atlantic mackerel (Scomber scombrus) from the Svalbard archipelago, Norway, with possible explanations for the extension of its distribution. Archives, 68(1): 54–61

    Google Scholar 

  • Bogen J, Bønsnes T E. 2003. Erosion and sediment transport in high Arctic rivers, Svalbard. Polar Research, 22(2): 175–189, doi: https://doi.org/10.3402/polar.v22i2.6454

    Article  Google Scholar 

  • Botwe B O, Schirone A, Delbono I, et al. 2019. Radioactivity concentrations and their radiological significance in sediments of the Tema Harbour (Greater Accra, Ghana). Journal of Radiation Research and Applied Sciences, 10(1): 63–71

    Article  Google Scholar 

  • Bourgeois S, Kerhervé P, Calleja M L, et al. 2016. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard). Journal of Marine Systems, 164: 112–127, doi: https://doi.org/10.1016/j.jmarsys.2016.08.009

    Article  Google Scholar 

  • Bourriquen M, Mercier D, Baltzer A, et al. 2018. Paraglacial coasts responses to glacier retreat and associated shifts in river flood-plains over decadal timescales (1966–2016), Kongsfjorden, Svalbard. Land Degradation & Development, 29(11): 4173–4185

    Article  Google Scholar 

  • Chen Jinfang, Liu Guangshan, Huang Yipu. 2005. Disequilibrium of natural decay series in sediments of intertidal mudflats of Xiamen. Journal of Oceanography in Taiwan Strait, 24(3): 274–282

    Google Scholar 

  • Chung Y, Chang W C. 1995. Pb-210 fluxes and sedimentation rates on the lower continental slope between Taiwan and the South Okinawa Trough. Continental Shelf Research, 15(2–3): 149–164, doi: https://doi.org/10.1016/0278-4343(94)E0023-F

    Article  Google Scholar 

  • Dowdall M, Gerland S, Lind B. 2003. Gamma-emitting natural and anthropogenic radionuclides in the terrestrial environment of Kongsfjord, Svalbard. Science of the Total Environment, 305(1–3): 229–240, doi: https://doi.org/10.1016/S0048-9697(02)00478-3

    Article  Google Scholar 

  • Du Jinzhou, Wu Yunfeng, Huang Dekun, et al. 2010. Use of 7Be, 210Pb and 137Cs tracers to the transport of surface sediments of the Changjiang Estuary, China. Journal of Marine Systems, 82(4): 286–294, doi: https://doi.org/10.1016/j.jmarsys.2010.06.003

    Article  Google Scholar 

  • Elverhøi A, Liestøl O, Nagy J. 1980. Glacial erosion, sedimentation and microfauna in the inner part of Kongsfjorden, Spitsbergen. Norsk Polarinstitutt Skrifter, 172: 33–58

    Google Scholar 

  • Glasser N F, Hambrey M J. 2001. Tidewater glacier beds: insights from iceberg debris in Kongsfjorden, Svalbard. Journal of Glaciology, 47(157): 295–302, doi: https://doi.org/10.3189/172756501781832331

    Article  Google Scholar 

  • Gwynn J P, Dowdall M, Davids C, et al. 2004. The radiological environment of svalbard. Polar Research, 23(2): 167–180, doi: https://doi.org/10.1111/j.1751-8369.2004.tb00006.x

    Article  Google Scholar 

  • Hegseth E N, Tverberg V. 2013. Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). Journal of Marine Systems, 113–114: 94–105

    Article  Google Scholar 

  • Hop H, Falk-Petersen S, Svendsen H, et al. 2006. Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Progress in Oceanography, 71(2–4): 182–231, doi: https://doi.org/10.1016/j.pocean.2006.09.007

    Article  Google Scholar 

  • Hop H, Pearson T, Hegseth E N, et al. 2002. The marine ecosystem of Kongsfjorden, Svalbard. Polar Research, 21(1): 167–208, doi: https://doi.org/10.3402/polar.v21i1.6480

    Article  Google Scholar 

  • Huang Dekun, Du Jinzhou, Deng Bing, et al. 2013. Distribution patterns of particle-reactive radionuclides in sediments off eastern Hainan Island, China: implications for source and transport pathways. Continental Shelf Research, 57: 10–17, doi: https://doi.org/10.1016/j.csr.2012.04.019

    Article  Google Scholar 

  • Husum K, Howe J A, Baltzer A, et al. 2019. The marine sedimentary environments of Kongsfjorden, Svalbard: an archive of polar environmental change. Polar Research, 38: 3880

    Article  Google Scholar 

  • Koziorowska K, Kulmski K, Pempkowiak J. 2017. Distribution and origin of inorganic and organic carbon in the sediments of Kongsfjorden, Northwest Spitsbergen, European Arctic. Continental Shelf Research, 150: 27–35, doi: https://doi.org/10.1016/j.csr.2017.08.023

    Article  Google Scholar 

  • Kuliñski K, Kędra M, Legeżyńska J, et al. 2014. Particulate organic matter sinks and sources in high Arctic fjord. Journal of Marine Systems, 139: 27–37, doi: https://doi.org/10.1016/j.jmarsys.2014.04.018

    Article  Google Scholar 

  • Lepage H, Laceby J P, Bonté P, et al. 2016. Investigating the source of radiocesium contaminated sediment in two Fukushima coastal catchments with sediment tracing techniques. Anthropocene, 13: 57–68, doi: https://doi.org/10.1016/j.ancene.2016.01.004

    Article  Google Scholar 

  • Li Peiquan, Liu Zhihe, Lu Guangshan, et al. 1984. The geochemical studies of U, Th, Ra, K(40K) in sediments of Okinawa Trough. Oceanologia et Limnologia Sinica, 15(5): 457–467

    Google Scholar 

  • Lima A L, Bergquist B A, Boyle E A, et al. 2005. High-resolution historical records from Pettaquamscutt River basin sediments: 2. Pb isotopes reveal a potential new stratigraphic marker. Geochimica et Cosmochimica Acta, 69(7): 1813–1824, doi: https://doi.org/10.1016/j.gca.2004.10.008

    Article  Google Scholar 

  • Liu J P, Li A C, Xu K H, et al. 2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Research, 26(17–18): 2141–2156, doi: https://doi.org/10.1016/j.csr.2006.07.013

    Article  Google Scholar 

  • Lizaga I, Gaspar L, Quijano L, et al. 2019. NDVI, 137Cs and nutrients for tracking soil and vegetation development on glacial land-forms in the Lake Parón Catchment (Cordillera Blanca, Perú). Science of the Total Environment, 651: 250–260, doi: https://doi.org/10.1016/j.scitotenv.2018.09.075

    Article  Google Scholar 

  • Łokas E, Zaborska A, Sobota I, et al. 2019. Airborne radionuclides and heavy metals in high Arctic terrestrial environment as the indicators of sources and transfers of contamination. The Cryosphere, 13(7): 2075–2086, doi: https://doi.org/10.5194/tc-13-2075-2019

    Article  Google Scholar 

  • Lydersen C, Assmy P, Falk-Petersen S, et al. 2014. The importance of tidewater glaciers for marine mammals and seabirds in Sval-bard, Norway. Journal of Marine Systems, 129: 452–471, doi: https://doi.org/10.1016/j.jmarsys.2013.09.006

    Article  Google Scholar 

  • Ma Fuwei, Li Maotian, Liu Yan, et al. 2020. Changes of nutrient salts deposited in the Burullus lagoon, Egypt: effects of human activity over the past century. Acta Sedimentologica Sinica, 38(6): 1249–1257

    Google Scholar 

  • Mabit L, Benmansour M, Abril J M, et al. 2014. Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: a review. Earth-Science Reviews, 138: 335–351, doi: https://doi.org/10.1016/j.earscirev.2014.06.007

    Article  Google Scholar 

  • Mao Yuanyi, Lin Jing, Huang Dekun, et al. 2018. Radionuclides in the surface sediments along the coast of Bailong Peninsula in Beibu Gulf. Journal of Applied Oceanography, 37(2): 194–202

    Google Scholar 

  • Piquet A M T, van de Poll W H, Visser R J W, et al. 2014. Springtime phytoplankton dynamics in Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences, 11(8): 2263–2279, doi: https://doi.org/10.5194/bg-11-2263-2014

    Article  Google Scholar 

  • Sanchez-Cabeza J A, Ruiz-Fernández A C. 2012. 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochimica et Cosmochimica Acta, 82: 183–200, doi: https://doi.org/10.1016/j.gca.2010.12.024

    Article  Google Scholar 

  • Shi Fengdeng, Cheng Zhenbo, Wu Yonghua, et al. 2011. The research on glacial-marine deposit types and sedimentary processes in the Arctic Kongsfjorden. Haiyang Xuebao (in Chinese), 33(2): 115–123

    Google Scholar 

  • Shi Fengdeng, Shi Xuefa, Su Xin, et al. 2018. Clay minerals in Arctic Kongsfjorden surface sediments and their implications on provenance and paleoenvironmental change. Acta Oceanologica Sinica, 37(5): 29–38, doi: https://doi.org/10.1007/s13131-018-1220-6

    Article  Google Scholar 

  • Singh N, Rajan S, Choudhary S, et al. 2018a. Diisopropylnaphthalene in the surface sediments of an Arctic fjord: environmental significance. Polar Science, 18: 142–146, doi: https://doi.org/10.1016/j.polar.2018.04.009

    Article  Google Scholar 

  • Singh N, Sivaramakrishnan R, Choudhary S, et al. 2018b. Spatial distribution and environmental assessment of heavy metals in the surface sediments of Kongsfjorden, Svalbard. Czech Polar Reports, 8(1): 1–23, doi: https://doi.org/10.5817/CPR2018-1-1

    Article  Google Scholar 

  • Su C C, Huh C A. 2002. 210Pb, 137Cs and 239240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Marine Geology, 183(1–4): 163–178, doi: https://doi.org/10.1016/S0025-3227(02)00165-2

    Article  Google Scholar 

  • Svendsen H, Beszczynska-M0ller A, Hagen J O, et al. 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Research, 21(1): 133–166

    Google Scholar 

  • Takata H, Hasegawa K, Oikawa S, et al. 2015. Remobilization of radiocesium on riverine particles in seawater: the contribution of desorption to the export flux to the marine environment. Marine Chemistry, 176: 51–63, doi: https://doi.org/10.1016/j.marchem.2015.07.004

    Article  Google Scholar 

  • Torsvik T, Albretsen J, Sundfjord A, et al. 2019. Impact of tidewater glacier retreat on the fjord system: modeling present and future circulation in Kongsfjorden, Svalbard. Estuarine, Coastal and Shelf Science, 220: 152–165

    Article  Google Scholar 

  • Wadham J L, Hodson A J, Tranter M, et al. 1998. The hydrochemistry of meltwaters draining a polythermal-based, high Arctic glacier, south Svalbard: I. The ablation season. Hydrological Processes, 12(12): 1825–1849, doi: https://doi.org/10.1002/(SICI)1099-1085(19981015)12:12<1825::AID-HYP669>3.0.CO;2-R

    Article  Google Scholar 

  • Wang Jinlong, Du Jinzhou, Baskaran M, et al. 2016. Mobile mud dynamics in the East China Sea elucidated using 210Pb, 137Cs, 7Be, and 234Th as tracers. Journal of Geophysical Research, 121(1): 224–239

    Article  Google Scholar 

  • Wang Jinlong, Du Jinzhou, Bi Qianqian. 2017. Natural radioactivity assessment of surface sediments in the Yangtze Estuary. Marine Pollution Bulletin, 114(1): 602–608, doi: https://doi.org/10.1016/j.marpolbul.2016.09.040

    Article  Google Scholar 

  • Wojtasik B, Świrydowicz S, Burska D, et al. 2017. Radionuclide activities in sediments on the northern coast of Spitsbergen. Polish Polar Research, 38(3): 291–312, doi: https://doi.org/10.1515/popore-2017-0019

    Article  Google Scholar 

  • Wu Meigui, Du Jinzhou, Zhang Jing, et al. 2011. Seasonal properties and environmental signification of 210Pbex228Thex7Be and 137Cs in surface sediment of tidal flat, Chongming, China. Marine Environmental Science, 30(6): 792–797

    Google Scholar 

  • Xu Cheng, Yang Bin, Dan S F, et al. 2020. Spatiotemporal variations of biogenic elements and sources of sedimentary organic matter in the largest oyster mariculture bay (Maowei Sea), Southwest China. Science of the Total Environment, 730: 139056, doi: https://doi.org/10.1016/j.scitotenv.2020.139056

    Article  Google Scholar 

  • Yang Hui, Zheng Binxing, Yu Dongsheng, et al. 2017. Characteristics of surface sediment grain size and the erosion/deposition evolution in the outer Pinghai Bay, Fujian. Journal of Applied Oceanography, 36(2): 233–242

    Google Scholar 

  • Zaborska A, Pempkowiak J, Papucci C. 2006. Some sediment characteristics and sedimentation rates in an Arctic Fjord (Kongsfjorden, Svalbard). Annual Environmental Protection, 8: 79–97

    Google Scholar 

  • Zajaczkowsk M. 2008. Sediment supply and fluxes in glacial and out-wash fjords, Kongsfjorden and Adventfjorden, Svalbard. Polish Polar Research, 29(1): 59–72

    Google Scholar 

  • Zhu Zhuoyi, Wu Ying, Liu Sumei, et al. 2016. Organic carbon flux and particulate organic matter composition in Arctic valley glaciers: Examples from the Bayelva River and adjacent Kongsfjorden. Biogeosciences, 13(4): 975–987, doi: https://doi.org/10.5194/bg-13-975-2016

    Article  Google Scholar 

  • Zhu Kun, Wu Ying, Qi Lijun. 2020. Spatiotemporal variations and influencing factors of organic carbon content in the urban rivers of Shanghai. Journal of East China Normal University: Natural Science, (1): 150–158

Download references

Acknowledgements

We thank two anonymous reviewers for their constructive comments for improvement of the original manuscript. We thank Zhuoyi Zhu for his assistance with field sampling.

Funding

Foundation item: The National Natural Science Foundation of China under contract Nos 41706089 and 42107251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, S., Deng, B., Wang, J. et al. Distribution of gamma-ray radionuclides in surface sediments of the Kongsfjorden, Arctic: Implications for sediment provenance. Acta Oceanol. Sin. 41, 21–29 (2022). https://doi.org/10.1007/s13131-021-1916-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-021-1916-x

Key words

Navigation