Skip to main content
Log in

Gamma dose rate and 226Ra activity concentrations in the soil around a Mexican radioactive waste-storage center

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The environmental gamma dose rate has been determined at the Mexican Storage Centre for Radioactive Waste (SCRW) and surrounding communities. The gamma dose rates were evaluated using thermoluminescent dosimeters and a portable gamma-ray spectrometer. The activity concentrations of 235U, 226Ra, 232Th, 40K, and 137Cs in soil samples were determined by gamma spectrometry. The gamma dose rates and the annual effective doses were higher at the SCRW and at border line, as compared with the surrounding communities. A site specific lineal model to describe the relationship between the outdoor gamma dose rate and the 226Ra activity concentrations in the soil is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. UNSCEAR (2000) Sources and effects of ionizing radiation. Report to the General Assembly, with scientific annexes, vol 1. United Nations Scientific Committee on Effects of Atomic Radiation, New York

    Google Scholar 

  2. Rafique M, Rahman SU, Basharat M, Aziz W, Ahmad I, Lone KA, Ahmad KM (2014) Evaluation of excess life time cancer risk from gamma dose rates in Jhelum Valley. J Radiat Res Appl Sci 7:29–35

    Article  Google Scholar 

  3. Paschoa AS, Steinhäusler F (2010) Technologically enhanced natural radiation. Radioactivity in the Environment. Volume Seventeen, Elsevier´s Science & Technology, ISBN: 978-0-08-044936-4, ISSN 1569-4860, Oxford

  4. Vandenhove H (2013) Phytoremediation options for radioactively contaminated sites evaluated. Ann Nucl Energy 62:596–606

    Article  CAS  Google Scholar 

  5. Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, Van Hees M, Wannijn J, Vangronsveld J, Cuypers A (2013) Effects of pH on uranium uptake and oxidative stress responses induced in Arabidopsis thaliana. Environ Toxicol Chem 32:2125–2133

    Article  CAS  Google Scholar 

  6. OECD (2014) Organization for Economic Cooperation and Development and Nuclear Energy Agency, No. 7062 managing environmental and health impacts of uranium mining. www.oecd.org/publishing/corrigenda. Accessed 16 June 2014

  7. Fathi RA, Godbold DL, Al-Salih HS, Jones D (2014) Potential of Phytoremediation to clean up uranium-contaminated soil with Acacia species. J Environ Earth Sci 4:81–91

    Google Scholar 

  8. UNSCEAR (2008) Sources and effects of ionizing radiation, vol 1. United Nations Scientific Committee on Effects of Atomic Radiation, New York

    Google Scholar 

  9. Gaso MI, Segovia N, González PR, López MC (2013) Gamma dose rate due to natural and manmade radiation sources from a nuclear facility in Mexico. J Radioanal Nucl Chem 296:1213–1218

    Article  CAS  Google Scholar 

  10. Hameed PS, Pillai GS, Satheeshkumar G, Mathiyarasu R (2014) Measurement of gamma radiation from rocks used as building material in Tiruchirappalli district, Tamil Nadu, India. J Radioanal Nucl Chem 300:1081–1088

    Article  CAS  Google Scholar 

  11. Bleise A, Danesi PR, Burkart W (2003) Properties, use and health effects of depleted uranium (DU). J Environ Radioact 64:93–112

    Article  CAS  Google Scholar 

  12. Magnoni M, Bertino S, Belloto B, Campi M (2001) Variations of the isotopic ratios of uranium in environmental samples containing traces of depleted uranium: theoretical and experimental aspects. Radiat Prot Dosim 97:337–340

    Article  CAS  Google Scholar 

  13. Jia G, Belli M, Sansone U, Rosamilia S, Gaudino S (2005) Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro. Appl Radiat Isot 63:381–399

    Article  CAS  Google Scholar 

  14. Meyers LA, LaMont SP, Stalcup AM, Spitz HB (2014) Uranium isotopic signatures measured in samples of dirt collected at two former uranium facilities. J Radioanal Nucl Chem 301:307–313

    Article  CAS  Google Scholar 

  15. WHO (2003) World Health Organization depleted uranium—fact sheet. http://www.who.int/mediacentre/factsheets/fs257/en/print.html. Accessed 23 June 2014

  16. Vandenhove H, Cuypers A, Van Hees M, Koppen G, Wannijn J (2006) Oxidative stress reactions induced in beans (Phaseolus vulgaris) following exposure to uranium. Plant Physiol Biochem 44:795–805

    Article  CAS  Google Scholar 

  17. International Atomic Energy Agency, IAEA (2010) Analytical methodology for the determination of radium isotopes in environmental samples. IAEA/AQ/19, Vienna

  18. Jia G, Jia J (2012) Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology. J Environ Radioact 106:98–119

    Article  CAS  Google Scholar 

  19. International Atomic Energy Agency, IAEA (2003) Categorization of radioactive sources. TECDOC-1344. Vienna

  20. Angiboust S, Fayek M, Power IM, Camacho A, Calas G, Southam G (2012) Structural and biological control of the Cenozoic epithermal uranium concentrations from the Sierra Peña Blanca, Mexico. Miner Deposita 47:859–874

    Article  CAS  Google Scholar 

  21. International Atomic Energy Agency, IAEA (2009) World distribution of uranium deposits (UDEPO) with uranium deposit classification. Technical Report No. 1629. Vienna

  22. Segovia N, Tamez E, Peña P, Gaso I, Mireles F, Davila I, Quirino L (1994) Atmospheric radon: origin and transfer. Radiat Prot Dosim 56:157–160

    CAS  Google Scholar 

  23. Gaso MI, Cervantes L, Segovia N, Abascal F, Salazar S, Velásquez R, Mendoza R (1995) 137Cs and 226Ra determination in soil and land snails from a radioactive waste site. Sci Total Environ 173/174:41–45

    Article  CAS  Google Scholar 

  24. Gaso MI, Segovia N, Morton O (2002) In situ biological monitoring of radioactivity and metal pollution in terrestrial snails Helix aspersa from a semiarid ecosystem. Radioprot Colloq 37:865–871

    Google Scholar 

  25. Gaso MI, Segovia N, Morton O, Armienta MA (2003) Biological monitoring of radioactivity and metal pollution in edible eggs of Liometopum apiculatum (ants) from a radioactive waste site in Central Mexico. In: Warwick P (ed) Environmental radiochemical analysis II. Royal Society of Chemistry, Cambridge, pp 334–339

    Chapter  Google Scholar 

  26. Segovia N, Gaso MI, Armienta MA (2007) Environmental radon studies in Mexico. Environ Geochem Health 29:143–153

    Article  CAS  Google Scholar 

  27. Gaso MI, Segovia N, Gonzalez PR, Azorin J (2004) Effective additional gamma dose for general population and workers from a Mexican radioactive waste site. Pak J Biol Sci 7:2155–2162

    Article  Google Scholar 

  28. Gaso MI, Segovia N, Morton O (2005) Environmental impact assessment of uranium ore mining and radioactive waste around a storage centre from Mexico. Radioprotection 40:S739–S745

    Article  Google Scholar 

  29. Azorin J, González G, Gutierrez A, Salvi R (1984) Preparation and dosimetric properties of a highly sensitive CaSO4:Dy thermoluminescent dosimeter. Health Phys 46:269–274

    Article  CAS  Google Scholar 

  30. González PR, Cruz-Zaragoza E, Furetta C, Azorín J, Alcántara BC (2013) Effect of thermal treatment on TL response of CaSO4:Dy obtained using a new preparation method. Appl Radiat Isot 75:58–63

    Article  Google Scholar 

  31. International Atomic Energy Agency, IAEA (2003) Guidelines for radioelement mapping using gamma ray spectrometry data. IAEA-TECDOC-1363, Vienna

  32. Quintero E, Lopez H, Cervantes ML (1996) Gamma and beta background counting of I-131 in milk in the vicinity of the Nuclear Centre, Mexico. J Radioanal Nucl Chem Lett 214:309–317

    Article  Google Scholar 

  33. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  34. Hosoda M, Sorimachi A, Ynsuoka Y, Ishikawa T, Sahoo SK, Furukawa M, Hassan NM, Tokonami S, Uchida S (2009) Simultaneous measurements of radon and thoron exhalation rates and comparison with values calculated by UNSCEAR equation. J Radiat Res 50:333–343

    Article  CAS  Google Scholar 

  35. Nagaoka K, Hiraide I, Sato K, Nakamura T (2009) Nationwide measurements of cosmic-ray dose rates throughout Japan. Radiat Prot Dosim 132:365–374

    Article  Google Scholar 

  36. Anagnostakis MJ, Hinis EP, Karangelos DJ, Petropoulos NP, Rouni PK, Simopoulos SE, Zunic ZS (2001) Determination of depleted uranium in environmental samples by gamma-spectroscopic techniques. Arch Oncol 9:231–236

    Google Scholar 

  37. Maxwell SL, Culligan BK, Hutchison JB, Utsey RC, McAlister DR (2014) Rapid determination of 226Ra in emergency urine samples. J Radioanal Nucl Chem 300:1159–1166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge V. Rojas, F. Montes, G. Valentin, and R. Benitez for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Gaso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaso, M.I., González, P.R., Segovia, N. et al. Gamma dose rate and 226Ra activity concentrations in the soil around a Mexican radioactive waste-storage center. J Radioanal Nucl Chem 303, 2321–2331 (2015). https://doi.org/10.1007/s10967-014-3774-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3774-x

Keywords

Navigation