Skip to main content
Log in

Separation of uranyl ion using polyaniline

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Polyaniline (Pani) was synthesized by the chemical oxidation of aniline. The use of persulphate instead of dichromate was desired in order to avoid the incorporation of chromium in the polymer matrix. The presence of chromium in the matrix, when dichromate was used as an oxidant, was confirmed by various techniques. The batch mode experiments showed that Pani could be used for separation of different metal ions. These ions were converted into their anionic complexes using suitable complexing agents. It was found that EDTA was used as a suitable reagent for the separation of Cu2+ from Zn2+ whereas the uranyl ion uptake could be increased to about 95 % when carbonate was used instead of EDTA as complexing agent. A possible application of the above exchange system to preconcentration of uranyl ion from seawater has also been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hall N (2003) Chem Comm, 1–4. doi: 10.1039/B210718J

  2. Patil AO, Ikenoue Y, Wudl F, Heeger AJ (1987) J Am Chem Soc 109:1858–1859

    Article  CAS  Google Scholar 

  3. Macdiarmid AG (1987) Synth Met 21:79–83

    Article  CAS  Google Scholar 

  4. Macdiarmid AG, Chiang JC, Richter AF, Epstein AJ (1987) Synth Met 18:286–290

    Google Scholar 

  5. Hasany SM, Saeed MM, Ahmed M (2002) J Radioanal Nucl Chem 252:477–484

    Article  CAS  Google Scholar 

  6. Yamato A (1982) J Radioanal Nucl Chem 75:265–273

    Article  CAS  Google Scholar 

  7. Akyil S, Aslani MAA, Eral M (2003) J Radioanal Nucl Chem 256:45–51

    Article  CAS  Google Scholar 

  8. Abd El-Rahman M, El-Kamash AM, El-Sourougy MR, Abdel-Moniem NM (2006) J Radioanal Nucl Chem 268:221–230

    Article  CAS  Google Scholar 

  9. Olmez Aytas S, Akyi S, Era M (2006) J Radioanal Nucl Chem 260:119–125

    Article  Google Scholar 

  10. Misaelides P, Nikashina VA, Godelitsas A, Gembitskii PA, Kats EM (1998) J Radioanal Nucl Chem 227:183–186

    Article  CAS  Google Scholar 

  11. Akyi S, Era M (2005) J Radioanal Nucl Chem 266:89–93

    Article  Google Scholar 

  12. Verma R, Kumar S, Parthasarathy R (1997) J Radioanal Nucl Chem 218:189–191

    Article  CAS  Google Scholar 

  13. Remya Devi PS, Kumar S, Verma R, Sudersanan M (2006) J Radioanal Nucl Chem 269:217–222

    Article  Google Scholar 

  14. Sheng G, Li Y, Dong H, Shao D (2012) J Radioanal Nucl Chem 293:797–806

    Article  CAS  Google Scholar 

  15. Jérôme C, Martinot L, Jérôme R (1999) J Radioanal Nucl Chem 240:969–972

    Article  Google Scholar 

  16. Ali M (2004) J Radioanal Nucl Chem 260:149–157

    Article  CAS  Google Scholar 

  17. Jayshree R, Shrimal KS, Maiti B, Mathur PK (1996) J Membr Sci 116:31–37

    Article  Google Scholar 

  18. Jayshree R, Nayak SK, Maiti B (2002) J Membr Sci 196:203–210

    Article  Google Scholar 

  19. Jayshree R, Dhole K, Maiti B, Mathur PK (2000) Sep Sci Technol 35:2535–2539

    Article  Google Scholar 

  20. Jayshree R, Chandramouleeswaran S, Sudarsan V, Mishra RK, Kaushik CP, Raj K, Mukherjee T, Tyagi AK (2008) J Hazard Mater 154:513–518

    Article  Google Scholar 

  21. Vogel AL (1999) A textbook of quantitative inorganic analysis, 6th edn. ELBS, London

    Google Scholar 

  22. MacDiarmid AG, Chang JC, Richter AF, Epstein AJ (1987) Synth Met 18:285–290

    Article  CAS  Google Scholar 

  23. Epstein AJ, MacDiarmid AG (1989) Electronic properties of conjugated polymers. In: Kuzmany H, Mehring M Ruth S (Eds.), Springer, Berlin

  24. Syed AA, Dinesan MK (1992) Analyst 117:61–62

    Article  CAS  Google Scholar 

  25. Bernier P, Lefrant S, Bidan G (Eds.) (1999) Advances in synthetic metals—20 years of progress in science and technology, Elsevier, Amsterdam

  26. Rao PS, Anmol J, Palaniappan S, Sathyanarayana DN (2000) Eur Polym J 36:915–921

    Article  CAS  Google Scholar 

  27. Sindhimeshram DC, Gupta MC (1995) Ind J Chem A34:260–263

    Google Scholar 

  28. Schrader B (Ed.) (1995) Infrared and raman spectroscopy-methods and applications, VCH, New York

  29. Strejskal J, Sapurina L, Trchova M, Prokes J, Knuka I, Tobolkova E (1998) Macromol 31:2210–2213

    Google Scholar 

  30. Zhao B, Neoh KG, Kang ET (2000) Chem Mater 12:1800–1806

    Article  CAS  Google Scholar 

  31. Athawale AA, Deore BV, Kulkarni MV (1999) Mater Chem Phys 60:262

    Article  CAS  Google Scholar 

  32. Boyer MI, Quillard S, Rebourt E, Louara G, Bulsson JP, Monkvaman A, Lefrant S (1998) J Phys Chem B 102:7382–7392

    Article  CAS  Google Scholar 

  33. Harada J, Farukawa T, Veda F (1989) Synth Met 29:303–312

    Article  Google Scholar 

  34. Heeger AJ (2001) Angew Chem Int Ed 40:2591–2611

    Article  CAS  Google Scholar 

  35. Murugesan R, Subramanian E (2002) Bull Mater Sci 25:613–618

    Article  CAS  Google Scholar 

  36. Rodden CJ (1950) Analytical chemistry of Manhattan project. McGraw Hill, Maidenheach

    Google Scholar 

  37. Jojo PJ, Rawat A, Kumar A, Prasad R (1994) J Radioanal Nucl Chem 178:245–251

    Article  CAS  Google Scholar 

  38. West TS, Numberg HW (1998) The determination of trace metals in natural waters. Blackwell, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayshree Ramkumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramkumar, J., Chandramouleeswaran, S. Separation of uranyl ion using polyaniline. J Radioanal Nucl Chem 298, 1543–1549 (2013). https://doi.org/10.1007/s10967-013-2553-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2553-4

Keywords

Navigation