Skip to main content
Log in

Removal of heavy metals by electrodialysis using polyanilines prepared in hydrochloric acid and ionic liquids

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) was synthesized in HCl (1 M) and in the presence of two ionic liquids: 1-butyl-3-methylimidazolium tetrafluoroborate (BMimBF4) and 1-hexyl-2,3-dimethylimidazolium chloride ([HMMim][Cl]). The resulting polymers (PANI and PANI doped by ionic liquids) were associated to polyvinyl alcohol to prepare cation-exchange membranes. The membranes were characterized by optical microscopy, scanning electron microscopy, differential scanning calorimetry, and thermogravimetry analysis. After characterization, the membranes were applied to the elimination of heavy metals (copper, lead, and cadmium) in aqueous solutions via electrodialysis. The results showed extraction percentages comprised between 80.63 and 96.04 % (for Cu2+), 87.89 and 99.55 % (for Pb2+), and 68.53 and 88.03 % (for Cd2+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.L. Sall, B. Fall, I. Diédhiou, E.H. Dièye, M. Lo, A.K.D. Diaw, D. Gningue-Sall, N. Raouafi, M. Fall, Chem. Afr. 3, 499 (2020)

    Article  CAS  Google Scholar 

  2. D. Sollitto, M. Romic, A. Castrignanò, D. Romic, H. Bakic, J. Catena. 80, 182 (2010)

    Article  CAS  Google Scholar 

  3. G. Aragay, J. Pons, A. Merkoçi, J. Chem. Rev. 111, 3433 (2011)

    Article  CAS  Google Scholar 

  4. M. Banchelli, C. Guardiani, R.B. Sandberg, S. Menichetti, P. Procacci, G. Caminati, J. Molec, Struct. 1091, 65–73 (2015)

    CAS  Google Scholar 

  5. V.K. Gupta, H. Karimi-Maleh, R. Sadegh, Int. J. Electrochem. Sci. 10, 303–316 (2015)

    Google Scholar 

  6. V. Karthikeyan, B. Gupta, A. Ramasamy, G. Titus, Sekaran. J. Mol. Liq. 163, 153–173 (2012)

    Article  Google Scholar 

  7. A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagib, V.K. Gupta, RSC Adv. 5, 18438–18450 (2015)

    Article  CAS  Google Scholar 

  8. V.K. Gupta, N. Atar, L. Uzun, J. Water Res. 48(1), 210–217 (2014)

    Article  CAS  Google Scholar 

  9. M.L. Yola, V.K. Gupta, T. Eren, A.E. Şen, N. Atar, J. Electrochim, Acta. 120, 204–211 (2014)

    CAS  Google Scholar 

  10. S. Caprarescu, V. Purcar, D.I. Vaireanu, Sep. Sci. Technol. 47, 2273–2280 (2012)

    CAS  Google Scholar 

  11. T.S. Anirudhan, P.G. Radhakrishnan, J. Appl, Surf. Sci. 255, 4983–4991 (2009)

    Article  CAS  Google Scholar 

  12. O. Abdelwahab, N.K. Amin, E.S.Z. El-Ashtoukh, J. Chem, Eng. Res. Des. 91, 165–173 (2013)

    Article  CAS  Google Scholar 

  13. T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, Desalination 169, 21–31 (2004)

    Article  CAS  Google Scholar 

  14. A. Dabrowski, Z. Hubicki, P. Podkoscielny, E. Robens, Chemosphere 56, 91–106 (2004)

    Article  CAS  Google Scholar 

  15. R. Vinodh, R. Padmavathi, D. Sangeetha, Desalination 267, 267–276 (2011)

    Article  CAS  Google Scholar 

  16. M.N. Akieh, M. Lahtinen, A. Väisänen, M. Sillanpää, J. Hazard, Mater. 152, 640–647 (2008)

    CAS  Google Scholar 

  17. S.J. Oh, S.H. Moon, T. Davis, J. Membr, Sci. 169, 95–105 (2000)

    CAS  Google Scholar 

  18. A.T. Cherif, A. Elmidaoui, C. Gavach, J. Membr, Sci. 76, 39–49 (1993)

    CAS  Google Scholar 

  19. A. Temmar, Doctoral Thesis, M’Hamed Bougara University, Boumerdes (Algeria), 19, (2016)

  20. H. Strathmann, Desalination 264, 268–288 (2010)

    Article  CAS  Google Scholar 

  21. V. Liato, S. Labrie, M. Benali, M. Aider, Process. Saf. Environ. Prot. 93, 124–138 (2015)

    Article  CAS  Google Scholar 

  22. S. Caprarescu, V. Purcar, A. Sarbu, A.L. Radu, M. Ghiurea, I. Maior, Rev. Roum. Chim. 59(8), 639–644 (2014)

    Google Scholar 

  23. D. Sivakumar, D. Shankar, V. Gomathi, A. Nandakumaar, Pollut. Res. 33(3), 627–631 (2014)

    CAS  Google Scholar 

  24. K.B. Pedersen, P.E. Jensen, L.M. Ottosen, T. Lejon, Electrochim. Acta 173, 432–439 (2015)

    Article  CAS  Google Scholar 

  25. Y. Liu, X. Ke, H. Zhu, R. Chen, X. Chen, X. Zheng, Y. Jin, B. Van der Bruggen, Chem. Eng. J. 382, 122956 (2020)

    Article  CAS  Google Scholar 

  26. F. Müller, C.A. Ferreira, D.S. Azambuja, C. Aleman, E. Armelin, J. Phys. Chem. B 118, 1102 (2014)

    Article  Google Scholar 

  27. F. Müller, C.A. Ferreira, L. Franco, J. Puiggal, C. Aleman, E. Armelin, J. Phys. Chem. B 116, 11767 (2012)

    Article  Google Scholar 

  28. P. Knauth, L. Pasquini, M.L. Di Vona, Solid State Ionics 300, 97–105 (2017)

    Article  CAS  Google Scholar 

  29. H.A. Maitlo, J.H. Kim, J.Y. Park, Chemosphere. 172, 138–149 (2017)

    Article  CAS  Google Scholar 

  30. M. Asraf-Snir, J. Gilron, Y. Oren, J. Membr, Sci. 520, 176–186 (2016)

    CAS  Google Scholar 

  31. S. Frioui, R. Oumeddour, S. Lacour, Sep. Purif. Technol. 174, 264 (2017)

    Article  CAS  Google Scholar 

  32. X. Sun, H. Lu, J. Wang, J. Clean. Prod. 143, 250 (2017)

    Article  CAS  Google Scholar 

  33. M. Nemati, S.M. Hosseini, M. Shabanian, J. Hazard. Mater. 90-104, 337 (2017)

    Google Scholar 

  34. S.M. Hosseini, E. Jashni, M. Habibi, B. Van der Bruggen, J. Membr. Sci. 1-10, 560 (2018)

    Google Scholar 

  35. T. Sata, T. Sata, W. Yang, J. Membr, Sci. 206, 31–60 (2002)

    CAS  Google Scholar 

  36. S.M. Hosseini, S. Sohrabnejad, G. Nabiyouni, J. Membr. Sci. 292-300, 583 (2019)

    Google Scholar 

  37. M. Nemati, S.M. Hosseini, F. Parvizian, N. Rafiei, B. Van der Bruggen, Ionics 25, 3847–3857 (2019)

    Article  CAS  Google Scholar 

  38. E.H. Dièye, A. Fall, M. Fall, C.A. Ferreira, M.R.S. Silveira, A.F. Baldissera (2020), Int. J. Environ. Anal. Chem. 10.1080/03067319.2020.1791334.

  39. P.A. Basnayaka, M.K. Ram, E.K. Stefanakos, A. Kumar, J. Electrochem. Acta. 92, 376 (2013)

    Article  CAS  Google Scholar 

  40. F.D.R. Amado, E. Gondran, J.R. Ferreira, M.A.S. Rodrigues, C.A. Ferreira, J. Membr, Sci. 234, 139–145 (2004)

    CAS  Google Scholar 

  41. F.D.R. Amado, M.A.S. Rodrigues, F.D.P. Morisso, A.M. Bernardes, J.Z. Ferreira, C.A. Ferreira, J. Colloid Interface Sci. 320, 52–61 (2008)

    Article  CAS  Google Scholar 

  42. C.A. Ferreira, J. Casanovas, M.A.S. Rodrigues, F. Müller, E. Armelin, C. Alemaan, J. Chem, Eng. Data 55, 4801–4807 (2010)

    Article  CAS  Google Scholar 

  43. F.E. Müller, R. Andretta, L.O. Meneguzzi, C.A. Ferreira, J. Appl. Polym. Sci. 134, 44946 (2017)

    Article  Google Scholar 

  44. E. Yang, X. Qin, S. Wang, J. Mater. Lett. 62, 3555 (2008)

    Article  CAS  Google Scholar 

  45. G. Alberti, M. Casciola, L. Massinelli, B. Bauer, J. Membr, Sci. 185, 73–81 (2001)

    CAS  Google Scholar 

  46. K.J. Min, S.Y. Choi, D. Jang, J. Lee, K.Y. Park, Energy Sources. Part A 41, 2471–2480 (2019)

    CAS  Google Scholar 

  47. H. Merrikhpour, M. Jalali, Clean Techn. Environ. Policy 15, 303–316 (2013)

    Article  CAS  Google Scholar 

  48. G.N. Egwu, J.O. Agbenin, Toxicol. Environ. Chem. 94, 1707–1717 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the [International Science Program (ISP), University of Uppsala (Sweden) under Grant to African Network of Electroanalytical Chemists [IPICS/ANEC] and by TWAS, The World Academy of Science for the Advancement of Science in developing countries under No. 16-499RG/CHE/AF/AC_G–FR3240293299. C.A. Ferreira is grateful to CNPq, CAPES and FAPERGS by the support to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Modou Fall.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dièye, E.H., Fall, A., Fall, M. et al. Removal of heavy metals by electrodialysis using polyanilines prepared in hydrochloric acid and ionic liquids. emergent mater. 5, 1533–1542 (2022). https://doi.org/10.1007/s42247-021-00299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00299-y

Keywords

Navigation