Skip to main content
Log in

A semi-empirical method for calculation of true coincidence corrections for the case of a close-in detection in γ-ray spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper, a semi-empirical method is proposed to determine true coincidence-summing (TCS) correction factors for high resolution γ-ray spectrometry. It needs the knowledge of both full energy peak (FEP) efficiency and total-to-peak (TTP) efficiency curves. The TTP efficiency curve is established from the measurements with a set of coincidence-free point sources. Whereas for a volume source, the coincidence-free FEP efficiency curve is obtained iteratively by using the peaks from almost the coincidence-free nuclides and those from the coincident nuclides in the mixed standard sources. Then the fitting parameters obtained for both TTP and FEP efficiency curves are combined in a freely-available TCS calculation program called TrueCoinc, which yields the TCS correction factors required for any nuclide. As an application, the TCS correction factors were determined for the particular peaks of 238U, 226Ra and 232Th in the reference materials, measured in the case of a close-in detection geometry using a well-type Ge detector. The present TCS correction method can be applied without difficulty to all Ge detectors for any coincident nuclide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolotov VP, Koskelo MJ (1998) J Radioanal Nucl Chem 223:95

    Article  Google Scholar 

  2. Andreev DS, Erokhina KI, Zvonov VS, Lemberg IKh (1973) Izv Akad Nauk SSSR Ser Fiz 37:1609

    CAS  Google Scholar 

  3. Debertin K, Helmer RG (1988) Gamma- and X-ray Spectrometry with Semiconductor Detectors. Elsevier Science Publishers B.V., North-Holland, Amsterdam

  4. Moens L, De Corte F, Simonits A, Xilei L, De Wispelaere A, De Donder J, Hoste J (1982) J Radioanal Nucl Chem 70:539

    Article  CAS  Google Scholar 

  5. Korun M, Martincic R (1993) Nucl Instrum Methods Phys Res A 325:478

    Article  Google Scholar 

  6. Kolotov VP, Atrashkevich VV, Gelsema SJ (1996) J Radioanal Nucl Chem 210:183

    Article  CAS  Google Scholar 

  7. Sima O (2000) J Radioanal Nucl Chem 244:669

    Article  CAS  Google Scholar 

  8. Korun M (2001) Nucl Instrum Methods Phys Res A 457:245

    Article  CAS  Google Scholar 

  9. Blaauw M, Gelsema SJ (2003) Nucl Instrum Methods Phys Res A 505:311

    Article  CAS  Google Scholar 

  10. Vidmar T, Korun M (2006) Nucl Instrum Methods Phys Res A 556:543

    Article  CAS  Google Scholar 

  11. Arnold D, Sima O (2006) Appl Radiat Isot 64:1297

    Article  CAS  Google Scholar 

  12. Vidmar T, Korun M, Vodenik B (2007) Appl Radiat Isot 65:243

    Article  CAS  Google Scholar 

  13. Sima O (2000) Nucl Instrum Methods Phys Res A 450:98

    Article  CAS  Google Scholar 

  14. Laborie J-M, Le Petit G, Abt D, Girard M (2000) Appl Radiat Isot 53:57

    Article  CAS  Google Scholar 

  15. Garcia-Talavera M, Leadermann JP, Decombaz M, Daza MJ, Quintana B (2001) Appl Radiat Isot 54:769

    Article  CAS  Google Scholar 

  16. Sima O, Arnold D (1996) Appl Radiat Isot 47:889

    Article  CAS  Google Scholar 

  17. Wang TK, Hou IM, Tseng CL (1999) Nucl Instrum Methods Phys Res A 425:504

    Article  CAS  Google Scholar 

  18. Sima O, Arnold D, Dovlete C (2001) J Radioanal Nucl Chem 248:359

    Article  CAS  Google Scholar 

  19. Arnold D, Sima O (2004) Appl Radiat Isot 60:167

    Article  CAS  Google Scholar 

  20. Gilmore GR (2008) Practical gamma-ray spectrometry, 2nd edn. Wiley, Chichester, England

    Google Scholar 

  21. Venkataraman R, Bronson F, Alrashkevich V, Young BM, Field M (1999) Nucl Instrum Methods Phys Res A 422:450

    Article  CAS  Google Scholar 

  22. Zhu H, Venkataraman R, Mueller W, Lamontagne J, Bronson F, Morris K, Berlizov A (2009) Appl Radiat Isot 67:696

    Article  CAS  Google Scholar 

  23. Russ W, Venkataraman R, Bronson F (2005) J Radioanal Nucl Chem 264:193

    Article  CAS  Google Scholar 

  24. DSM Research, Kayzero for Windows User’s Manual, Ver. 2, Geleen, NL, 2005

  25. De Wispelaere A, De Corte F (2006) Nucl Instrum Methods Phys Res A 564:645

    Article  Google Scholar 

  26. Blaauw M (1998) Nucl Instrum Methods Phys Res A 419:146

    Article  CAS  Google Scholar 

  27. Dryák P, Kovar P, Suran J (2002) Appl Radiat Isot 56:111

    Article  Google Scholar 

  28. Dryák P, Kovar P (2009) J Radioanal Nucl Chem 279:385

    Article  Google Scholar 

  29. Sudár S (2002) “TRUECOINC”, a software utility for calculation of the true coincidence correction, in the specialized software utilities for gamma spectrometry, IAEA-TECDOC-1275, pp 37–38, International Atomic Energy Agency, Vienna, ISSN 1011-4289

  30. Yücel H, Solmaz AN, Köse E, Bor D (2009) Appl Radiat Isot. doi:10.1016/j.apradiso.2009.07.11 (Accepted paper)

  31. Lee M, Park TS, Woo JK (2008) Appl Radiat Isot 66:799

    Article  CAS  Google Scholar 

  32. Venkataraman R, Croft S, Russ WR (2005) J Radioanal Nucl Chem 66:183

    Article  Google Scholar 

  33. Customization Tools Manual (2004) Canberra spectroscopy software Genie-2000, Ver. 3.0, Canberra Inc., Meriden, USA

  34. Firestone RB, Shirley VS (2008) Table of isotopes, 8th ed. CD-ROM Ver. 1.0 (1996) or on the web page http://www.nndc.bnl.gov/nndc/ensdf/

  35. Kolotov VP, Atrashkevich VV, Dogadkin NN (1999) Czech J Phys 49:423

    Article  CAS  Google Scholar 

  36. Lepy M-C (2007) Nucl Instrum Methods Phys Res A 579:284

    Article  CAS  Google Scholar 

  37. Ramos-Lerate I, Barrera M, Ligero RA, Casas-Ruiz M (1997) Nucl Instrum Methods Phys Res A 395:202

    Article  CAS  Google Scholar 

  38. NIST, Xcom (2008) Photon Cross Sections Database on the web page http://physics.nist.gov/PhysRefData/Xcom/

Download references

Acknowledgements

This work was supported by AU-INS within the framework of the project No. DPT 2005K-120130 under the cooperation between AU and TAEA. Authors are grateful to Dr. S. SUDÁR from Institute of Experimental Physics, Kossuth University, Debrecen, Hungary, for his permission to use TrueCoinc program. We also express our sincere gratitude to Prof. Dr. H. Y. GÖKSU from AU-INS for her useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yücel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yücel, H., Solmaz, A.N., Köse, E. et al. A semi-empirical method for calculation of true coincidence corrections for the case of a close-in detection in γ-ray spectrometry. J Radioanal Nucl Chem 283, 305–312 (2010). https://doi.org/10.1007/s10967-009-0360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-009-0360-8

Keywords

Navigation