Skip to main content
Log in

Characterization of gamma irradiated plasticized starch/poly(vinyl alcohol) (PLST/PVA) blends and their application as protected edible materials

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Blends based on different ratios of plasticized starch (PLST) and poly(vinyl alcohol) (PVA) were prepared in the form of thin films by casting solutions. The effect of gamma-irradiation on thermal, mechanical and morphological properties was investigated. The results of thermogravimetric analysis (TGA), in terms of weight loss and rate of reaction, indicated that the thermal stability of PLST/PVA blends is higher than pure PLST. The differential scanning calorimetry (DSC) scans do not show the glass transition temperature (Tg) of PVA or PLST, but instead a new single glass transition, indicating the occurrence of compatibility. The mechanical testing of PLST/PVA blends showed that tensile strength and elongation at break were increased by increasing the ratio of PVA. At any ratio of PLST/PVA, the tensile strength and elongation at break was found to increase with increasing irradiation dose. As an application in the field of prolonging food preservation lifetime, solutions of gamma irradiated PLST/PVA blends in the presence of chitosan, as an antimicrobial material, were applied to Mango fruits by surface coating. The results showed that this technique would provide suitable materials for food preservation that withstanding the temperature and stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Matsumura S, Tomizawa N, Toki A, Nishikawa K, Toshima K (1999) Macromolecular 32:7753

    Article  CAS  Google Scholar 

  2. Bergo PV, Carvalho RA, Sobral PJA, Santos RM, Da Silva FB, Prison JM, Solorza-feria J, Habitante AM (2007) Packag Technol Sci 21:85

    Article  Google Scholar 

  3. Das K, Ray D, Bandyopadhyay NR, Gupta A, Sengupta S, Sahoo S, Mohanty A, Misra M (2010) Ind Eng Chem Res 49:2176

    Article  CAS  Google Scholar 

  4. Russo MAL, Sullivan C, Rounsefell B, Halley PJ, Truss R, Clarke WP (2009) Bioresour Technol 100:1705

    Article  CAS  Google Scholar 

  5. Siddaramaiah BR, Somashekar R (2004) Appl Polym Sci 91:630

    Article  CAS  Google Scholar 

  6. Jayasekara R, Hading I, Bwater I, Christie GBY, Lonergan GT (2004) Polym Test 23:17

    Article  CAS  Google Scholar 

  7. Yoon S, Chough S, Park H (2007) Appl Polym Sci 106:2485

    Article  CAS  Google Scholar 

  8. Xiao C, Yang M (2006) Carbohydr Polym 64:37

    Article  CAS  Google Scholar 

  9. Senna MH, Yossef AM, Hossam FM, El-Naggar AM (2007) J Appl Polym Sci 106:3273

    Article  CAS  Google Scholar 

  10. Bastioli C (1995) Starch-polymer composites. In: Scott G, Gilead D (eds) Degradable, polymers, principles and applications. Chapman & Hall, London, p 112

    Google Scholar 

  11. Pimpa B, Muhammad K, Ghazali Zu, Hashim K, Hassan MA, Hashim D (2007) Carabohydr Polym 68:751

    Article  CAS  Google Scholar 

  12. Chiellini E, Cinelli P, Imam SH, Mao L (2001) Biomacromolecules 2:1029

    Article  CAS  Google Scholar 

  13. Elizondo NJ, Sobral PJA, Menegalli FC (2009) Carbohydr Polym 75:592

    Article  CAS  Google Scholar 

  14. Iman SH, Cinelli P, Gordon SH, Chiellini E (2005) J Polym Env 13:47

    Article  Google Scholar 

  15. Sreedhar B, Sairam M, Chattopadhyay DK, Rathnam PAS, Rao DVM (2005) J Appl Polym Sci 96:1313

    Article  CAS  Google Scholar 

  16. Zhai ML, Yoshii F, Kume T, Hashimm K (2002) Carbohydr Polym 50:295

    Article  CAS  Google Scholar 

  17. Senna MH, Abdel-Fattah A, Abdel-Monam YK (2008) Nucl Inst Meth B 266:2599

    Article  CAS  Google Scholar 

  18. Singh A (2001) Radiat Phys Chem 60:453

    Article  CAS  Google Scholar 

  19. Dole M (1972, 1973) In Radiation chemistry of macromolecules, Vol. 1 and 2. Academic Press, New York

  20. Whitten KW, Gailelt KD. General chemistry with quantitative analysis, Saunders College Publishing

  21. Sriram V, Subramari S, Radhakrishan G (2001) Polym Int 50:1124

    Article  CAS  Google Scholar 

  22. Sundari F, Isni M (1983) J Appl Polym Sci 28:3123

    Article  Google Scholar 

  23. Bicrano J (1993) In Prediction of polymer properties, Marcel Dekker, N Y, 16: 332

  24. Van Krevelen DW (1990) In Properties of polymers. Elsevier. Amsterdam, Chap. 21

  25. Senna M, Khalil SA, El-Naggar AM (2004) Egypt Text Polym Sci Tech 8:45

    CAS  Google Scholar 

  26. Sperling LH (1986) In Introduction to physical polymer science. John Wiley & Sons, New York, Ch. 6:277

  27. Mali S, Sakanaka LS, Yamashita F, Grossmann ME (2005) Carbohydr Polym 60:283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy M. Senna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senna, M.M., El-Shahat, H.A. & El-Naggar, A.W.M. Characterization of gamma irradiated plasticized starch/poly(vinyl alcohol) (PLST/PVA) blends and their application as protected edible materials. J Polym Res 18, 763–771 (2011). https://doi.org/10.1007/s10965-010-9473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9473-6

Keywords

Navigation