Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 9, pp 2683–2690 | Cite as

The Vanishing Superfluid Density in Cuprates—and Why It Matters

  • I. BožovićEmail author
  • X. He
  • J. Wu
  • A. T. Bollinger
Review Paper


Recently, we have released the results of a comprehensive study of a couple thousand single-crystal La2−xSrxCuO4 films, covering densely the entire overdoped side of the phase diagram (Božović et al. Nature 536, 309–311, 2016; Wu et al. Nature 547, 432–435, 2017). Here, we review the key experimental findings, place them in the context of other important well-established facts and observations, and discuss their implications for our understanding of high-temperature superconductivity in cuprates. We conclude that it involves some new physics that requires going beyond the standard Fermi liquid description of the normal state and Bardeen-Cooper-Schrieffer description of the superconducting state.


High-temperature superconductivity Cuprate Thin films Molecular beam epitaxy Superfluid density 



This research was done at BNL and was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

Funding Information

X.H. is supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4410.


  1. 1.
    Božović, I., He, X., Wu, J., Bollinger, A.T.: Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Wu, J., Bollinger, A.T., He, X., Božović, I.: Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature 547, 432–435 (2017)CrossRefGoogle Scholar
  3. 3.
    Gozar, A., et al.: High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782–785 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Logvenov, G., Gozar, A., Bozovic, I.: High-temperature superconductivity in a single copper-oxygen plane. Science 326, 699–702 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Sochnikov, I., Shaulov, A., Yeshurun, Y., Logvenov, G., Bozovic, I.: Large oscillations of the magnetoresistance in nanopatterned high-temperature superconducting films. Nat. Nanotechnol. 5, 516–519 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Bollinger, A.T., Dubuis, G., Yoon, J., Pavuna, D., Misewich, J., Božović, I.: Superconductor-insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Dean, M.P.M., et al.: Spin excitations in a single La2CuO4 layer. Nat. Mater. 11, 850–854 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Dean, M.P.M., et al.: Persistence of magnetic excitations in La2−xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal. Nat. Mater. 12, 1019–1023 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Wu, J., et al.: Anomalous independence of interface superconductivity from carrier density. Nat. Mater. 12, 877–881 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Shi, X., et al.: Emergence of superconductivity from the dynamically heterogeneous insulating state in La2−xSrxCuO4. Nat. Mater. 12, 47–51 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Torchinsky, D.H., Mahmood, F., Bollinger, A.T., Božović, I, Gedik, N.: Fluctuating charge-density waves in a cuprate superconductor. Nat. Mater. 12, 387–391 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Wu, J., Bollinger, A.T., Sun, Y.-J., Božović, I.: Hall effect in quantum critical charge-cluster glass. Proc. Natl. Acad. Sci. USA (PNAS) 113, 4284–4289 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Giraldo-Gallo, P., et al.: Scale invariant magnetoresistance in the strange metal phase of a cuprate superconductor. Science 360 (2018)Google Scholar
  14. 14.
    Lemberger, T.R., Hetel, I., Tsukada, A., Naito, M.: Anomalously sharp superconducting transitions in overdoped La2−xSrxCuO4 films. Phys. Rev. B 82, 214513 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Lemberger, T.R., Hetel, I., Tsukada, A., Naito, M., Randeria, M.: Superconductor-to-metal quantum phase transition in overdoped La2−xSrxCuO4. Phys. Rev. B 83, 140507 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    He, X., Gozar, A., Sundling, R., Božović, I.: High-precision measurement of magnetic penetration depth in superconducting films. Rev. Sci. Instr. 87, 113903 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Zhou, X.J., et al.: Universal nodal Fermi velocity. Nature 423, 398–398 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Padilla, W.J., et al.: Constant effective mass across the phase diagram of high-T c cuprates. Phys. Rev. B 72, 060511 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Dai, Y.M., et al.: Doping evolution of the optical scattering rate and effective mass of Bi2Sr2−xLaxCuO6. Phys. Rev. B 85, 092504 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Emery, V., Kivelson, S.A.: Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    Gasparov, V., Božović, I.: Magnetic field and temperature dependence of complex conductance of ultrathin La1.65Sr0.45CuO4/ La2CuO4 films. Phys. Rev. B 86, 094523 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Grbić, M.S., et al.: Temperature range of superconducting fluctuations above \(T_{\mathrm {c}}\) in YBa2Cu3O7−δ single crystals. Phys. Rev. B 83, 144508 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J.N., Božović, I.: Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ. Nature 398, 221 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Bilbro, L.S., et al.: Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy. Nat. Phys. 7, 298–302 (2011)CrossRefGoogle Scholar
  25. 25.
    Xu, Z.A., Ong, N.P., Wang, Y., Kakeshita, T., Uchida, S.: Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−xSrxCuO4. Nature 406, 486–488 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, Y.Y., et al.: Onset of the vortex-like Nernst signal above \(T_{\mathrm {c}}\) in La2−xSrxCuO4 and Bi2Sr2−yLaCuO6. Phys. Rev. B 64, 224519 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Wang, Y., Li, L., Ong, N.P.: Nernst effect in high-T c superconductors. Phys. Rev. B 73, 024510 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Li, L., et al.: Diamagnetism and Cooper pairing above \(T_{\mathrm {c}}\) in cuprates. Phys. Rev. B 81, 054510 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Rourke, P.M.C., et al.: Phase-fluctuating superconductivity in overdoped La2−xSrxCuO4. Nat. Phys. 7, 455–458 (2011)CrossRefGoogle Scholar
  30. 30.
    Kondo, T., et al.: Point nodes persisting far beyond \(T_{\mathrm {c}}\) in Bi2212. Nat. Commun. 6, 7699 (2015)CrossRefGoogle Scholar
  31. 31.
    Hardy, W.N., Bonn, D.A., Morgan, D.C., Liang, R.: Zhang., K.: Precision measurements of the temperature dependence of \(\lambda \) in YBa2Cu3O6.95: strong evidence for nodes in the gap function. Phys. Rev. Lett. 70, 3999–4002 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    Won, H., Maki, K.: d-wave superconductor as a model of high-Tc superconductors. Phys. Rev. B 49, 1397–1402 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    Hirschfeld, P.J., Goldenfeld, N.: Effect of strong scattering on the low-temperature penetration depth of a d-wave superconductor. Phys. Rev. B 48, 4219–4222 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    Dahm, T., Hirschfeld, P.J., Scalapino, D.J., Zhu, L.: Nodal quasiparticle lifetimes in cuprate superconductors. Phys. Rev. B 72, 214512 (2005). Erratum Phys. Rev. B 76, 139904 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Lee-Hone, N.R., Dodge, J.S., Broun, D.M.: Disorder and superfluid density in overdoped cuprate superconductors. Phys. Rev. B 96, 024501 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Broun, D.M., et al.: Superfluid density in a highly underdoped YBa2Cu3O6+y superconductor. Phys. Rev. Lett. 99, 237003 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Kim, G.C., Cheon, M., Ahn, S.S., Jeong, J.H., Kim, Y.C.: Relationship between superfluid density at zero temperature and \(T_{\mathrm {c}}\) of Bi2Sr2−xLaxCuO6 + δ (0.4 ≤ x ≤ 0.76) and Bi2Sr1.6La0.4Cu1−yZnyO6 + d (0.0 \(\le y \le \) 0.015). Europhys. Lett. 81, 27005 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Broun, D.M., et al.: In-plane microwave conductivity of the single-layer cuprate Tl2Ba2CuO6+δδ. Phys. Rev. B 56, 11443–11446 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    Deepwell, D., et al.: Microwave conductivity and superfluid density in strongly overdoped Tl2Ba2CuO6+δ. Phys. Rev. B 88, 214509 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Vignolle, B., et al.: Quantum oscillations in an overdoped high-T c superconductor. Nature 455, 952–955 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Bangura, A.F., et al.: Fermi surface and electronic homogeneity of the overdoped cuprate superconductor Tl2Ba2CuO6+δ as revealed by quantum oscillations. Phys. Rev. B 82, 140501(R) (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Hashimoto, K., et al.: A sharp peak of the zero-temperature penetration depth at optimal composition in BaFe2(As1−x P x)2. Science 336, 1554–1557 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    Keimer, B., Kivelson, S.A., Norman, M.R., Uchida, S., Zaanen, J.: From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Badoux, S., et al.: Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 531, 210–214 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    This parameter p is not a physical quantity that we measure directly; it is inferred from the measured \(T_{\mathrm {c}}\) by assuming the universal parabolic relation proposed by Presland, M.R., Tallon, J.L., Buckley, R.G., Flower, N.E.: General trends in oxygen stoichiometry effects on \(T_{\mathrm {c}}\) in Bi and Tl superconductors. Physica C 176, 95–105 (1991). This practice is widespread in the literature, and hence, we use the same convention here, just to facilitate the comparison with the literature. But, we emphasize that none of our conclusions here, nor in any other paper of ours, ever depend on this conventionGoogle Scholar
  46. 46.
    Uemura, Y.J., et al.: Magnetic-field penetration depth in Tl2Ba2CuO6+δ in the overdoped regime. Nature 364, 605–607 (1993)ADSCrossRefGoogle Scholar
  47. 47.
    Niedermayer, Ch, et al.: Muon spin rotation study of the correlation between \(T_{\mathrm {c}}\) and \(n_{\mathrm {s}}\)/m in overdoped Tl2Ba2CuO6+δ. Phys. Rev. Lett. 71, 1764–1767 (1993)ADSCrossRefGoogle Scholar
  48. 48.
    Homes, C.C., et al.: A universal scaling relation in high-temperature superconductors. Nature 430, 539–541 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    Homes, C.C., Dordevic, S.V., Bonn, D.A., Liang, R., Hardy, W.N.: Sum rules and energy scales in the high-temperature superconductor YBa2Cu3O6+x. Phys. Rev. B 69, 024514 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    Božović, I., Wu, J., He, X., Bollinger, A.T.: Can high-Tc superconductivity in cuprates be explained by the conventional BCS theory? Low Temp. Phys. 44, 674–683 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. Božović
    • 1
    • 2
    Email author
  • X. He
    • 1
    • 2
  • J. Wu
    • 1
  • A. T. Bollinger
    • 1
  1. 1.Brookhaven National LaboratoryUptonUSA
  2. 2.Department of Applied PhysicsYale UniversityNew HavenUSA

Personalised recommendations