Skip to main content
Log in

The Vanishing Superfluid Density in Cuprates—and Why It Matters

  • Review Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Recently, we have released the results of a comprehensive study of a couple thousand single-crystal La2−xSrxCuO4 films, covering densely the entire overdoped side of the phase diagram (Božović et al. Nature 536, 309–311, 2016; Wu et al. Nature 547, 432–435, 2017). Here, we review the key experimental findings, place them in the context of other important well-established facts and observations, and discuss their implications for our understanding of high-temperature superconductivity in cuprates. We conclude that it involves some new physics that requires going beyond the standard Fermi liquid description of the normal state and Bardeen-Cooper-Schrieffer description of the superconducting state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Božović, I., He, X., Wu, J., Bollinger, A.T.: Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016)

    Article  ADS  Google Scholar 

  2. Wu, J., Bollinger, A.T., He, X., Božović, I.: Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature 547, 432–435 (2017)

    Article  Google Scholar 

  3. Gozar, A., et al.: High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782–785 (2008)

    Article  ADS  Google Scholar 

  4. Logvenov, G., Gozar, A., Bozovic, I.: High-temperature superconductivity in a single copper-oxygen plane. Science 326, 699–702 (2009)

    Article  ADS  Google Scholar 

  5. Sochnikov, I., Shaulov, A., Yeshurun, Y., Logvenov, G., Bozovic, I.: Large oscillations of the magnetoresistance in nanopatterned high-temperature superconducting films. Nat. Nanotechnol. 5, 516–519 (2010)

    Article  ADS  Google Scholar 

  6. Bollinger, A.T., Dubuis, G., Yoon, J., Pavuna, D., Misewich, J., Božović, I.: Superconductor-insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011)

    Article  ADS  Google Scholar 

  7. Dean, M.P.M., et al.: Spin excitations in a single La2CuO4 layer. Nat. Mater. 11, 850–854 (2012)

    Article  ADS  Google Scholar 

  8. Dean, M.P.M., et al.: Persistence of magnetic excitations in La2−xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal. Nat. Mater. 12, 1019–1023 (2013)

    Article  ADS  Google Scholar 

  9. Wu, J., et al.: Anomalous independence of interface superconductivity from carrier density. Nat. Mater. 12, 877–881 (2013)

    Article  ADS  Google Scholar 

  10. Shi, X., et al.: Emergence of superconductivity from the dynamically heterogeneous insulating state in La2−xSrxCuO4. Nat. Mater. 12, 47–51 (2013)

    Article  ADS  Google Scholar 

  11. Torchinsky, D.H., Mahmood, F., Bollinger, A.T., Božović, I, Gedik, N.: Fluctuating charge-density waves in a cuprate superconductor. Nat. Mater. 12, 387–391 (2013)

    Article  ADS  Google Scholar 

  12. Wu, J., Bollinger, A.T., Sun, Y.-J., Božović, I.: Hall effect in quantum critical charge-cluster glass. Proc. Natl. Acad. Sci. USA (PNAS) 113, 4284–4289 (2016)

    Article  ADS  Google Scholar 

  13. Giraldo-Gallo, P., et al.: Scale invariant magnetoresistance in the strange metal phase of a cuprate superconductor. Science 360 (2018)

  14. Lemberger, T.R., Hetel, I., Tsukada, A., Naito, M.: Anomalously sharp superconducting transitions in overdoped La2−xSrxCuO4 films. Phys. Rev. B 82, 214513 (2010)

    Article  ADS  Google Scholar 

  15. Lemberger, T.R., Hetel, I., Tsukada, A., Naito, M., Randeria, M.: Superconductor-to-metal quantum phase transition in overdoped La2−xSrxCuO4. Phys. Rev. B 83, 140507 (2011)

    Article  ADS  Google Scholar 

  16. He, X., Gozar, A., Sundling, R., Božović, I.: High-precision measurement of magnetic penetration depth in superconducting films. Rev. Sci. Instr. 87, 113903 (2016)

    Article  ADS  Google Scholar 

  17. Zhou, X.J., et al.: Universal nodal Fermi velocity. Nature 423, 398–398 (2003)

    Article  ADS  Google Scholar 

  18. Padilla, W.J., et al.: Constant effective mass across the phase diagram of high-T c cuprates. Phys. Rev. B 72, 060511 (2005)

    Article  ADS  Google Scholar 

  19. Dai, Y.M., et al.: Doping evolution of the optical scattering rate and effective mass of Bi2Sr2−xLaxCuO6. Phys. Rev. B 85, 092504 (2012)

    Article  ADS  Google Scholar 

  20. Emery, V., Kivelson, S.A.: Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434 (1994)

    Article  ADS  Google Scholar 

  21. Gasparov, V., Božović, I.: Magnetic field and temperature dependence of complex conductance of ultrathin La1.65Sr0.45CuO4/ La2CuO4 films. Phys. Rev. B 86, 094523 (2012)

    Article  ADS  Google Scholar 

  22. Grbić, M.S., et al.: Temperature range of superconducting fluctuations above \(T_{\mathrm {c}}\) in YBa2Cu3O7−δ single crystals. Phys. Rev. B 83, 144508 (2011)

    Article  ADS  Google Scholar 

  23. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J.N., Božović, I.: Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ. Nature 398, 221 (1999)

    Article  ADS  Google Scholar 

  24. Bilbro, L.S., et al.: Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy. Nat. Phys. 7, 298–302 (2011)

    Article  Google Scholar 

  25. Xu, Z.A., Ong, N.P., Wang, Y., Kakeshita, T., Uchida, S.: Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−xSrxCuO4. Nature 406, 486–488 (2000)

    Article  ADS  Google Scholar 

  26. Wang, Y.Y., et al.: Onset of the vortex-like Nernst signal above \(T_{\mathrm {c}}\) in La2−xSrxCuO4 and Bi2Sr2−yLaCuO6. Phys. Rev. B 64, 224519 (2001)

    Article  ADS  Google Scholar 

  27. Wang, Y., Li, L., Ong, N.P.: Nernst effect in high-T c superconductors. Phys. Rev. B 73, 024510 (2006)

    Article  ADS  Google Scholar 

  28. Li, L., et al.: Diamagnetism and Cooper pairing above \(T_{\mathrm {c}}\) in cuprates. Phys. Rev. B 81, 054510 (2010)

    Article  ADS  Google Scholar 

  29. Rourke, P.M.C., et al.: Phase-fluctuating superconductivity in overdoped La2−xSrxCuO4. Nat. Phys. 7, 455–458 (2011)

    Article  Google Scholar 

  30. Kondo, T., et al.: Point nodes persisting far beyond \(T_{\mathrm {c}}\) in Bi2212. Nat. Commun. 6, 7699 (2015)

    Article  Google Scholar 

  31. Hardy, W.N., Bonn, D.A., Morgan, D.C., Liang, R.: Zhang., K.: Precision measurements of the temperature dependence of \(\lambda \) in YBa2Cu3O6.95: strong evidence for nodes in the gap function. Phys. Rev. Lett. 70, 3999–4002 (1993)

    Article  ADS  Google Scholar 

  32. Won, H., Maki, K.: d-wave superconductor as a model of high-Tc superconductors. Phys. Rev. B 49, 1397–1402 (1994)

    Article  ADS  Google Scholar 

  33. Hirschfeld, P.J., Goldenfeld, N.: Effect of strong scattering on the low-temperature penetration depth of a d-wave superconductor. Phys. Rev. B 48, 4219–4222 (1993)

    Article  ADS  Google Scholar 

  34. Dahm, T., Hirschfeld, P.J., Scalapino, D.J., Zhu, L.: Nodal quasiparticle lifetimes in cuprate superconductors. Phys. Rev. B 72, 214512 (2005). Erratum Phys. Rev. B 76, 139904 (2005)

    Article  ADS  Google Scholar 

  35. Lee-Hone, N.R., Dodge, J.S., Broun, D.M.: Disorder and superfluid density in overdoped cuprate superconductors. Phys. Rev. B 96, 024501 (2017)

    Article  ADS  Google Scholar 

  36. Broun, D.M., et al.: Superfluid density in a highly underdoped YBa2Cu3O6+y superconductor. Phys. Rev. Lett. 99, 237003 (2007)

    Article  ADS  Google Scholar 

  37. Kim, G.C., Cheon, M., Ahn, S.S., Jeong, J.H., Kim, Y.C.: Relationship between superfluid density at zero temperature and \(T_{\mathrm {c}}\) of Bi2Sr2−xLaxCuO6 + δ (0.4 ≤ x ≤ 0.76) and Bi2Sr1.6La0.4Cu1−yZnyO6 + d (0.0 \(\le y \le \) 0.015). Europhys. Lett. 81, 27005 (2008)

    Article  ADS  Google Scholar 

  38. Broun, D.M., et al.: In-plane microwave conductivity of the single-layer cuprate Tl2Ba2CuO6+δδ. Phys. Rev. B 56, 11443–11446 (1997)

    Article  ADS  Google Scholar 

  39. Deepwell, D., et al.: Microwave conductivity and superfluid density in strongly overdoped Tl2Ba2CuO6+δ. Phys. Rev. B 88, 214509 (2013)

    Article  ADS  Google Scholar 

  40. Vignolle, B., et al.: Quantum oscillations in an overdoped high-T c superconductor. Nature 455, 952–955 (2008)

    Article  ADS  Google Scholar 

  41. Bangura, A.F., et al.: Fermi surface and electronic homogeneity of the overdoped cuprate superconductor Tl2Ba2CuO6+δ as revealed by quantum oscillations. Phys. Rev. B 82, 140501(R) (2010)

    Article  ADS  Google Scholar 

  42. Hashimoto, K., et al.: A sharp peak of the zero-temperature penetration depth at optimal composition in BaFe2(As1−x P x)2. Science 336, 1554–1557 (2012)

    Article  ADS  Google Scholar 

  43. Keimer, B., Kivelson, S.A., Norman, M.R., Uchida, S., Zaanen, J.: From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015)

    Article  ADS  Google Scholar 

  44. Badoux, S., et al.: Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 531, 210–214 (2016)

    Article  ADS  Google Scholar 

  45. This parameter p is not a physical quantity that we measure directly; it is inferred from the measured \(T_{\mathrm {c}}\) by assuming the universal parabolic relation proposed by Presland, M.R., Tallon, J.L., Buckley, R.G., Flower, N.E.: General trends in oxygen stoichiometry effects on \(T_{\mathrm {c}}\) in Bi and Tl superconductors. Physica C 176, 95–105 (1991). This practice is widespread in the literature, and hence, we use the same convention here, just to facilitate the comparison with the literature. But, we emphasize that none of our conclusions here, nor in any other paper of ours, ever depend on this convention

  46. Uemura, Y.J., et al.: Magnetic-field penetration depth in Tl2Ba2CuO6+δ in the overdoped regime. Nature 364, 605–607 (1993)

    Article  ADS  Google Scholar 

  47. Niedermayer, Ch, et al.: Muon spin rotation study of the correlation between \(T_{\mathrm {c}}\) and \(n_{\mathrm {s}}\)/m in overdoped Tl2Ba2CuO6+δ. Phys. Rev. Lett. 71, 1764–1767 (1993)

    Article  ADS  Google Scholar 

  48. Homes, C.C., et al.: A universal scaling relation in high-temperature superconductors. Nature 430, 539–541 (2004)

    Article  ADS  Google Scholar 

  49. Homes, C.C., Dordevic, S.V., Bonn, D.A., Liang, R., Hardy, W.N.: Sum rules and energy scales in the high-temperature superconductor YBa2Cu3O6+x. Phys. Rev. B 69, 024514 (2004)

    Article  ADS  Google Scholar 

  50. Božović, I., Wu, J., He, X., Bollinger, A.T.: Can high-Tc superconductivity in cuprates be explained by the conventional BCS theory? Low Temp. Phys. 44, 674–683 (2018)

    Google Scholar 

Download references

Acknowledgments

This research was done at BNL and was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

Funding

X.H. is supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4410.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Božović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Božović, I., He, X., Wu, J. et al. The Vanishing Superfluid Density in Cuprates—and Why It Matters. J Supercond Nov Magn 31, 2683–2690 (2018). https://doi.org/10.1007/s10948-018-4792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4792-7

Keywords

Navigation