Skip to main content
Log in

Realization of the Werner–Holevo and Landau–Streater Quantum Channels for Qutrits on Quantum Computers

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We realize the Landau–Streater (LS) and Werner–Holevo (WH) quantum channels for qutrits on IBM quantum computers. These channels correspond to the interaction between a qutrit and its environment that results in the globally unitarily covariant qutrit transformation violating the multiplicativity of the maximal p-norm. Our realization of the LS and WH channels is based on embedding the qutrit states into states of two qubits and using the single-qubit and two-qubit CNOT gates to implement the specific interaction. We employ the standard quantum gates, hence the developed algorithm suits any quantum computer. We run our algorithm on a 5-qubit computer and a 20-qubit computer, as well as on a simulator. We quantify the quality of the implemented channels comparing their action on different input states with theoretical predictions. The overall efficiency is quantified by the fidelity between the theoretical and experimental Choi states implemented on the 20-qubit computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).

  2. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press (2002).

  3. A. S. Holevo, Quantum Systems, Channels, Information, Walter de Gruyter, Berlin (2012).

  4. S. N. Filippov and K. V. Kuzhamuratova, J. Math. Phys., 60, 042202 (2019).

  5. S. N. Filippov, J. Math. Sci., 241, 210 (2019).

    Article  Google Scholar 

  6. L. J. Landau and R. F. Streater, Lin. Algebra Appl., 193, 107 (1993).

    Article  Google Scholar 

  7. K. M. R. Audenaert and S. Scheel, New J. Phys., 10, 023011 (2008).

    Article  ADS  Google Scholar 

  8. C. B. Mendl and M. M. Wolf, Commun. Math. Phys., 289, 1057 (2009).

    Article  ADS  Google Scholar 

  9. R. F. Werner and A. S. Holevo, J. Math. Phys., 43, 4353 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. C. Santos, in: Revista Brasileira de Ensino de Fisica (2016), Vol. 39.

  11. U. Alvarez-Rodriguez, M. Sanz, L. Lamata, and E. Solano, Sci. Rep., 10, 8 (2018).

    Google Scholar 

  12. A. A. Zhukov, S. V. Remizov, W. V. Pogosov, and Y. E. Lozovik, Quantum Inf. Process., 17, (2018).

  13. J. Roffe, D. Headley, N. Chancellor, et al., Quantum Sci. Technol., 3, 035010 (2018).

    Google Scholar 

  14. M. R. Geller, Phys. Rev. Appl., 10, 024052 (2018).

  15. Y. I. Bogdanov, D. V. Fastovets, B. I. Bantysh, et al., Quantum Electron., 48, 1016 (2018).

    Article  ADS  Google Scholar 

  16. J. Morris, F. A. Pollock, and K. Modi, “Non-Markovian memory in IBMQ4” arXiv.org/abs/1902.07980

  17. IBM Q Experience (2016 a), quantumexperience.ng.bluemix.net

  18. M.-D. Choi, Lin. Algebra Appl., 10, 285 (1975).

    Article  Google Scholar 

  19. A. Jamiolkowski, Rep. Math. Phys., 3, 275 (1972).

    Article  ADS  Google Scholar 

  20. S. N. Filippov and K. Y. Magadov, Lobachevskii J. Math., 39, 65 (2018).

    Article  MathSciNet  Google Scholar 

  21. M. Paris and J. Řeháček (Eds.), Quantum State Estimation, Springer, Berlin, Heidelberg (2004).

  22. IBM QISKIT (2016 b), https://qiskit.org

  23. R. Jozsa, J. Mod. Opt., 41, 2315 (1994).

    Article  ADS  Google Scholar 

  24. Frank Arute, Kunal Arya, and John M. Martinis, Nature, 574, 505 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Lesovik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhomchik, A.I., Feshchenko, I., Glatz, A. et al. Realization of the Werner–Holevo and Landau–Streater Quantum Channels for Qutrits on Quantum Computers. J Russ Laser Res 41, 40–53 (2020). https://doi.org/10.1007/s10946-020-09846-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09846-0

Keywords

Navigation