Skip to main content
Log in

Size controlled Pt over mesoporous NiO nanocomposite catalysts: thermal catalysis vs. photocatalysis

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mesoporous nickel oxide and Pt@NiO nanocomposites were synthesized for the study of CO2 methanation in the fixed bed reactor, atmospheric pressure, and photocatalytic degradation of methyl orange. All synthesized catalysts were characterized by XRD, N2 isotherms, TEM, UV–Vis DRS, and ICP-MS analysis. NiO with 8 nm Pt nanoparticles was the most active catalyst in photocatalysis, however, the 2 nm Pt nanoparticles were most active in the thermal CO2 activation reaction. High CO2 consumption and CH4 formation rates were obtained for Pt@NiO nanocomposites below 673 K compared with bare NiO by the formation of Pt/PtOx/Ni/NiOx interface in reaction condition. Pt2@NiO nanocomposite has shown a high CO2 consumption rate because of high dispersion of 2 nm Pt nanoparticles within mesoporous NiO and high Pt to Ni surface area during the reaction. The photocatalytic degradation efficiency of Pt8@NiO nanocomposite was higher compared to that of bare NiO by a decrease in the recombination of electron–hole pair under UV–Vis irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Fang, N. Yi, W. Di, T. Wang, Q. Wang, Int. J. Greeen H. Gas. Con. 93, 102904 (2020)

    Article  CAS  Google Scholar 

  2. I. Omae, Catal. Today 115, 33–52 (2006)

    Article  CAS  Google Scholar 

  3. S. Mutyala, M. Jonnalagadda, H. Mitta, R. Gundeboyina, Chem. Eng. Res. Des. 143, 241–248 (2019)

    Article  CAS  Google Scholar 

  4. A. Sayari, Y. Belmabkhout, R. Serna-Guerrero, Chem. Eng. J. 171, 760–774 (2011)

    Article  CAS  Google Scholar 

  5. G. Centi, S. Perathoner, Catal. Today 148, 191–205 (2009)

    Article  CAS  Google Scholar 

  6. X. Wang, L. Zhu, Y. Liu, S. Wang, Sci Total Environ. 625, 686–695 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. G. Zhou, H. Liu, K. Cui, H. Xie, Z. Jiao, G. Zhang, K. Xiong, X. Zheng, Int. J. Hydrog. Energy 42, 16108–16117 (2017)

    Article  CAS  Google Scholar 

  8. C. Italiano, J. Llorca, L. Pino, M. Ferraro, V. Antonucci, A. Vita, Appl. Catal. B Environ. 264, 118494 (2020)

    Article  CAS  Google Scholar 

  9. G. Zhou, H. Liu, Y. Xing, S. Xu, H. Xie, K. Xiong, J. CO2 Util. 26, 221–229 (2018)

    Article  CAS  Google Scholar 

  10. Z. Qin, X. Wang, L. Dong, T. Su, B. Li, Y. Zhou, Y. Jiang, X. Luo, H. Ji, Chem. Eng. Sci. 210, 115245 (2019)

    Article  CAS  Google Scholar 

  11. J. Díez-Ramírez, P. Sánchez, V. Kyriakou, S. Zafeiratos, G.E. Marnellos, M. Konsolakis, F. Dorado, J. CO2 Util. 21, 562–571 (2017)

    Article  Google Scholar 

  12. M. Tasbihi, F. Fresno, U. Simon, I.J. Villar-García, V. Pérez-Dieste, C. Escudero, V.A. de la Peña O’Shea, Appl. Catal. B Environ. 239, 68–76 (2018)

    Article  CAS  Google Scholar 

  13. H. Jiang, Q. Gao, S. Wang, Y. Chen, M. Zhang, J. CO2 Util. 31, 167–172 (2019)

    Article  CAS  Google Scholar 

  14. H.T.T. Nguyen, Y. Kumabe, S. Ueda, K. Kan, M. Ohtani, K. Kobiro, Appl. Catal. A Gen. 577, 35–43 (2019)

    Article  CAS  Google Scholar 

  15. A. Kim, D.P. Debecker, F. Devred, V. Dubois, C. Sanchez, C. Sassoye, Appl. Catal. B Environ. 220, 615–625 (2018)

    Article  CAS  Google Scholar 

  16. S. Navarro-Jaén, J.C. Navarro, L.F. Bobadilla, M.A. Centeno, O.H. Laguna, J.A. Odriozola, Appl. Sur. Sci. 483, 750–761 (2019)

    Article  Google Scholar 

  17. A. Karelovic, P. Ruiz, Appl. Catal. B Environ. 113, 237–249 (2012)

    Article  Google Scholar 

  18. P. Panagiotopoulou, Appl. Catal. A Gen. 542, 63–70 (2017)

    Article  CAS  Google Scholar 

  19. M. Li, H. Amari, A.C. van Veen, Appl. Catal. B Environ. 239, 27–35 (2018)

    Article  CAS  Google Scholar 

  20. S. Kattel, B. Yan, J.G. Chen, P. Liu, J. Catal. 343, 115–126 (2016)

    Article  CAS  Google Scholar 

  21. Q. Liu, Y. Tian, Int. J. Hydrog. Energy 42, 12295–12300 (2017)

    Article  CAS  Google Scholar 

  22. K. An, S. Alayoglu, N. Musselwhite, S. Plamthottam, G. Melaet, A.E. Lindeman, G.A. Somorjai, J. Am. Chem. Soc. 135, 16689–16696 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. N.M. Hosny, Polyhedron 30, 470–476 (2011)

    Article  CAS  Google Scholar 

  24. M. Nasirian, M. Mehrvar, J. Environ. Sci. 66, 81–93 (2018)

    Article  Google Scholar 

  25. R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Mater. Sci. Eng. C 33, 91–98 (2013)

    Article  CAS  Google Scholar 

  26. M.T. Islam, H. Jing, T. Yang, E. Zubia, A.G. Goos, R.A. Bernal, C.E. Botez, M. Narayan, C.K. Chan, J.C. Noveron, J. Environ. Chem. Eng. 6, 3827–3836 (2018)

    Article  CAS  Google Scholar 

  27. J. Gómez-Pérez, D.G. Dobó, K.L. Juhász, A. Sápi, H. Haspel, Á. Kukovecz, Z. Kónya, Catal. Today 284, 37–43 (2017)

    Article  Google Scholar 

  28. A. Sápi, T. Rajkumar, M. Ábel, A. Efremova, A. Grósz, A. Gyuris, K.B. Ábrahámné, I. Szenti, J. Kiss, T. Varga, Á. Kukovecz, Z. Kónya, J. CO2 Util. 32, 106–118 (2019)

    Article  Google Scholar 

  29. Q. Liu, S. Wang, G. Zhao, H. Yang, M. Yuan, X. An, H. Zhou, Y. Qiao, Y. Tian, Int. J. Hydrog. Energy 43, 239–250 (2018)

    Article  CAS  Google Scholar 

  30. H. Gao, Q. Yu, S. Zhang, T. Wang, P. Sun, H. Lu, F. Liu, X. Yan, F. Liu, X. Liang, Y. Gao, G. Lu, Sensors Actuators B Chem. 269, 210–222 (2018)

    Article  CAS  Google Scholar 

  31. K.S.W. Sing, Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  32. C. de Julián Fernández, G. Mattei, C. Sada, C. Battaglin, P. Mazzoldi, Mater. Sci. Eng. C 26, 987–991 (2006)

    Article  Google Scholar 

  33. A. Sápi, G. Halasi, J. Kiss, D.G. Dobó, K.L. Juhász, V.J. Kolcsár, Z. Ferencz, G. Vári, V. Matolin, A. Erdőhelyi, Á. Kukovecz, Z. Kónya, J. Phys. Chem. C 122, 5553–5565 (2018)

    Article  Google Scholar 

  34. G.M. Schwab, K. Koller, J. Am. Chem. Soc. 90, 3078–3080 (1968)

    Article  CAS  Google Scholar 

  35. J.Y. Park, L.R. Baker, G.A. Somorjai, Chem. Rev. 115, 2781–2817 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. J. Kim, W.H. Park, W.H. Doh, S.W. Lee, M.C. Noh, J.-J. Gallet, F. Bournel, H. Kondoh, K. Mase, Y. Jung, B.S. Mun, J.Y. Park, Sci. Adv. 4, 3151–3158 (2018)

    Article  Google Scholar 

  37. H. Lee, J. Lim, C. Lee, S. Back, K. An, J.W. Shin, R. Ryoo, Y. Jung, J.Y. Park, Nat. Commun. 9, 2235–2242 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  38. A. Kim, C. Sanchez, G. Patriarche, O. Ersen, S. Moldovan, A. Wisnet, C. Sassoye, D.P. Debecker, Catal. Sci. Technol. 6, 8117–8128 (2016)

    Article  CAS  Google Scholar 

  39. J.-N. Park, E.W. McFarland, J. Catal. 266, 92–97 (2009)

    Article  CAS  Google Scholar 

  40. G. Zhou, T. Wu, H. Xie, X. Zheng, Int. J Hydrog. Energy 38, 10012–10018 (2013)

    Article  CAS  Google Scholar 

  41. P.A.U. Aldana, F. Ocampo, K. Kobl, B. Louis, F. Thibault-Starzyk, M. Daturi, P. Bazin, S. Thomas, A.C. Roger, Catal. Today 215, 201–207 (2013)

    Article  CAS  Google Scholar 

  42. G. Garbarino, D. Bellotti, E. Finocchio, L. Magistri, G. Busca, Catal. Today 277, 21–28 (2016)

    Article  CAS  Google Scholar 

  43. T. Rajkumar, A. Sápi, M. Ábel, F. Farkas, J.F. Gómez-Pérez, Á. Kukovecz, Z. Kónya, Catal. Lett. 150, 1527–1536 (2020)

    Article  CAS  Google Scholar 

  44. F. Soofivand, M. Salavati-Niasari, J. Photochem. Photobiol. A Chem. 337, 44–53 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Hungarian Research Development and Innovation Office through grants NKFIH OTKA PD 120877 of AS. ÁK, and KZ is grateful for the fund of NKFIH (OTKA) K112531 and NN110676 and K120115, respectively. The financial support of the Hungarian National Research, Development and Innovation Office through the GINOP-2.3.2-15-2016-00013 project “Intelligent materials based on functional surfaces—from syntheses to applications” and the Ministry of Human Capacities through the EFOP-3.6.1-16-2016-00014 project and the 20391-3/2018/FEKUSTRAT are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Sápi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sápi, A., Mutyala, S., Garg, S. et al. Size controlled Pt over mesoporous NiO nanocomposite catalysts: thermal catalysis vs. photocatalysis. J Porous Mater 28, 605–615 (2021). https://doi.org/10.1007/s10934-020-00978-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00978-x

Keywords

Navigation