Journal of Porous Materials

, Volume 25, Issue 3, pp 935–943 | Cite as

Tetraalkylammonium acetates and tetraalkylammonium tetrafluoroborates as new templates for room-temperature synthesis of mesoporous silica spheres

  • Maya Guncheva
  • Momtchil Dimitrov
  • Paula Ossowicz
  • Ewa Janus


Six surface active compounds containing: hexadecyltrimethylammonium [HDTMA], dodecyltrimethylammonium [DDTMA] or didecyldimethylammonium [DDA] cation and tetrafluoroborate [BF4] or acetate [OAc] anion were synthesized, purified and characterized, and subsequently applied for the synthesis of mesoporous silica materials of MCM-41 type. The materials were characterized using X-ray diffraction, Scanning Electron microscopy, and nitrogen physisorption method. Their structures were compared with that of reference MCM-41 material obtained with the conventional template [HDTMA][Br]. Nanosized silica spheres with size distribution in the range of 200–800 nm are obtained with the novel templates. The pore size of the obtained materials was in the range of 2.1–3.1 nm, and it was dependent only on the cation structure of the templates. The MCM-41 materials obtained with the acetate-based templates were characterized with a higher specific surface area in comparison with the reference material. On the basis of SEM, XRD and nitrogen physisorption data could be concluded that all tetraalkylammonium acetates used as templates lead to mesoporous silica nanospheres with very good textural characteristics, while in case of tetraalkylammonium tetrafluoroborates the best results in terms of particle uniformity and surface properties are obtained with [DDTMA][BF4]. MCM-41-[HDTMA][OAc] exhibited excellent loading capacity (374.1 mg/g) for the cyclic peptide antibiotic bacitracin, and moderate to good loading capacity for larger peptide and proteins such as insulin (70.3 mg/g) and lipase from porcine pancreas (70.8 mg/g).


Structure-directing agents MCM-41 silica spheres Protein immobilization Bacitracin Insulin Lipase 



The authors would like to thank Nicola Zuccheto and Dr. Dominik Brühwiler form the Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Switzerland for the nitrogen physisorption and SEM measurements.

Supplementary material

10934_2017_505_MOESM1_ESM.doc (60 kb)
Supplementary material 1 (DOC 60 KB)


  1. 1.
    K.S.W. Sing,D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  2. 2.
    Y. Feng, N. Panwar, D.J.H. Tng, S.C. Tjin, K. Wang, K.-T. Yong, Coord. Chem. Rev. 319, 86 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Zuo, X. Wang, P. Yang, C. Qi, Catal. Commun. 94, 52 (2017)CrossRefGoogle Scholar
  4. 4.
    K. Yoncheva, M. Popova, A. Szegedi, J. Mihaly, B. Tzankov, N. Lambov, S. Konstantinov, V. Tzankova, F. Pessina, M. Valoti, J. Solid State Chem. 211, 154 (2014)CrossRefGoogle Scholar
  5. 5.
    H.-J. Kim, H.-C. Yang, D.-Y. Chung, I.-H. Yang, Y.J. Choi, J.-K. Moon, J. Chem. 2015, 202867 (2015)Google Scholar
  6. 6.
    A. Liberman, N. Mendez, W.C. Trogler, A.C. Kummel, Surf. Sci. Rep. 69(2–3), 132 (2014)CrossRefGoogle Scholar
  7. 7.
    Z. Zhou, M. Hartmann, Chem. Soc. Rev. 42, 3894 (2013)CrossRefGoogle Scholar
  8. 8.
    P. Kipkemboi, A. Fogden, V. Alfredsson, K. Flodström, Langmuir 17, 5398 (2001)CrossRefGoogle Scholar
  9. 9.
    N. Venkatathri, Mater. Sci. Eng. C 28, 1260 (2008)CrossRefGoogle Scholar
  10. 10.
    J.-Y. Zheng, J.-B. Pang, K.-Y. Qiu, Y. Wei, J. Inorgan. Organomet. Polym. 10(3), 103 (2000)CrossRefGoogle Scholar
  11. 11.
    N. Venkatathri, R. Srivastava, D.S. Yun, J.W. Yoo, Microporous Mesoporous Mater. 112, 147 (2008)CrossRefGoogle Scholar
  12. 12.
    C. Gerardin, J. Reboul, M. Bonne, B. Lebeau, Chem. Soc. Rev. 42, 4217 (2013)CrossRefGoogle Scholar
  13. 13.
    J.C. Vartuli, K.D. Schmitt, C.T. Kresge, W.J. Roth, M.E. Leonowicz, E.W. Sheppardt, S.B. McCullen, S.D. Hellring, J.S. Beck, J.L. Schlenker, D.H. Olson, E.W. Sheppard, Chem. Mater. 6, 2317 (1994)CrossRefGoogle Scholar
  14. 14.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C. T-. W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenkert, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  15. 15.
    Q. Huo, R. Leon, P.M. Petroff, G.D. Stucky, Science 268, 1324 (1995)CrossRefGoogle Scholar
  16. 16.
    D. Zhao, Q. Huo, J. Feng, J. Kim, Y. Han, G.D. Stucky, Chem. Mater. 11, 2668 (1999)CrossRefGoogle Scholar
  17. 17.
    L. Han, S. Che, Chem. Soc. Rev 42, 3740 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Antonietti, D. Kuang, B. Smarsly, Y. Zhou, Angew. Chem. Int. Ed. 43, 4988 (2004)CrossRefGoogle Scholar
  19. 19.
    A. Zukal, H. Siklova, J. Cejka, M. Thommes, Adsorption 13, 247 (2007)CrossRefGoogle Scholar
  20. 20.
    B. Trewyn, C.M. Whitman, V.S.-Y. Lin, Nano Lett. 4(11), 2139 (2004)CrossRefGoogle Scholar
  21. 21.
    T. Wang, H. Kaper, M. Antonietti, B. Smarsly, Langmuir 23, 1489 (2007)CrossRefGoogle Scholar
  22. 22.
    A. Zukal, M. Thommes, J. Cejka, Microporous Mesoporous Mater. 104, 52 (2007)CrossRefGoogle Scholar
  23. 23.
    Y.-J. Yu, J.-L. Xing, J.-L. Pang, S.-H. Jiang, K.-F. Lam, T.-Q. Yang, Q.-S. Xue, K. Zhang, P. Wu, ACS Appl. Mater. Interf. 6(24), 22655 (2014)CrossRefGoogle Scholar
  24. 24.
    A.K.L. Yuen, F. Heinroth, A.J. Ward, A.F. Masters, T. Maschmeyer, Microporous Mesoporous Mater. 148, 62 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Zhou, J.H. Schattka, M. Antonietti, Nano Lett. 4(3), 478 (2004)CrossRefGoogle Scholar
  26. 26.
    S. Dai, Y.H. Ju, H.J. Gao, J.S. Lin, S.J. Pennycook, C.E. Barnes, Chem. Commun. 243, 3 (2000)Google Scholar
  27. 27.
    H. Sanaeishoar, M. Sabbaghan, F. Mohave, Microporous Mesoporous Mater. 217, 219 (2015)CrossRefGoogle Scholar
  28. 28.
    B. Tan, H.-J. Lehmler, S.M. Vyas, B.L. Knutson, S.E. Rankin, Chem. Mater. 17, 916 (2005)CrossRefGoogle Scholar
  29. 29.
    M. Grün, K. Unger, A. Matsumoto, K. Tsutsumi, Microporous Mesoporous Mater. 27(2–3), 207 (1999)CrossRefGoogle Scholar
  30. 30.
    H. Zhang, J. Wu, L. Zhou, D. Zhang, L. Qi, Langmuir 23(3), 1107 (2007)CrossRefGoogle Scholar
  31. 31.
    L.M. Pera, M.D. Baigori, A. Pandey, G.R. Castro, Industrial Biorefineries and White Biotechnology (Elsevier, Amsterdam, 2015) pp. 391–408CrossRefGoogle Scholar
  32. 32.
    E. Skorupska, A. Jeziorna, P. Paluch,. M.J. Potrzebowski, Mol. Pharm. 11, 1512 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Heikkilä, J. Salonen, J. Tuura, N. Kumar, T. Salmi, D.Yu.. Murzin, M.S. Hamdy, G. Mul, L. Laitinen, A.M. Kaukonen, J. Hirvonen, V.-P. Lehto, Drug Deliv. 14, 337 (2007)CrossRefGoogle Scholar
  34. 34.
    N.V. Roik, L.A. Belyakova, M.O. Dziazko, Adsorpt. Sci. Technol. 35(1–2), 86 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Kosmulski, in Chemical Properties of Material Surfaces, ed. by H. T. Arthur (Marcel Dekker, Inc., New York, 2001), pp. 65–293CrossRefGoogle Scholar
  36. 36.
    J. Kraineva, V. Smirnovas, R. Winter, Langmuir 23, 7118 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Maya Guncheva
    • 1
  • Momtchil Dimitrov
    • 1
  • Paula Ossowicz
    • 2
  • Ewa Janus
    • 2
  1. 1.Institute of Organic Chemistry with Centre of PhytochemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Organic Chemical Technology, Faculty of Chemical Technology and EngineeringWest Pomeranian University of Technology SzczecinSzczecinPoland

Personalised recommendations