Skip to main content
Log in

Synthesis of N-doped mesoporous carbons under different carbonization temperature and their application in supercapacitors

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

We have synthesized N-doped mesoporous carbon by the in-suit doping template method under the carbonized temperature of 900 °C. We found that the electrochemical performance of mesoporous carbon was enhanced by N-doping. So, we tried to increase the content of nitrogen to further optimize the electrochemical performance of the mesoporous carbon as electrode materials. During the process of synthesizing mesoporous carbon, the carbonized temperature played an important role in the formation of the carbon structure and its morphology, as well as in determining the content of nitrogen. We attained a considerable electrochemical performance enhancement by changing the carbonized temperature from 900 to 700 °C. We found the content of Nitrogen decreased with the increase of the carbonized temperature and the content of Nitrogen is 6.11% at 700 °C, 5.39% at 800 °C, 3.9% at 900 °C, respectively. The best electrochemical performance was observed in the product carbonized at 700 °C, which exhibited high specific capacitance (245.6 F/g at 0.5 A/g) and good cycle ability (more than 90% of the initial capacitance after 5000 cycles) in 6 M KOH electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Shao et al., Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 11(44), 3639–3665 (2015)

    Article  Google Scholar 

  2. C. Zhong et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7431–7920 (2015)

    Article  Google Scholar 

  3. Y. Deng et al., Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. Mater. Chem. A 4(4), 1129–1532 (2016)

    Article  Google Scholar 

  4. F. Béguin et al., Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26(14), 2219–2251 (2014)

    Article  Google Scholar 

  5. V. Khomenko et al., High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl. Phys. A 82(4), 567–573 (2006)

    Article  CAS  Google Scholar 

  6. C. Arbizzani, M. Mastragostino, F. Soavi, New trends in electrochemical supercapacitors. J. Power Sources 100(1–2), 164–170 (2001)

    Article  CAS  Google Scholar 

  7. H. Oda et al., Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor. J. Power Sources 158(2), 1510–1516 (2006)

    Article  CAS  Google Scholar 

  8. T. Brousse et al., Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J. Power Sources 173(1), 633–641 (2007)

    Article  CAS  Google Scholar 

  9. V. Khomenko, E. Frackowiak, F. Béguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim. Acta 50(12), 2499–2506 (2005)

    Article  CAS  Google Scholar 

  10. V.D. Patake, C.D. Lokhande, Chemical synthesis of nano-porous ruthenium oxide (RuO2) thin films for supercapacitor application. Appl. Surf. Sci. 254(9), 2820–2824 (2008)

    Article  CAS  Google Scholar 

  11. V.D. Patake, C.D. Lokhande, O.S. Joo, Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl. Surf. Sci. 255(7), 4192–4196 (2009)

    Article  CAS  Google Scholar 

  12. W. Li et al., A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv. Energy Mater. 1(3), 382–386 (2011)

    Article  CAS  Google Scholar 

  13. G. Xiong et al., A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26(1), 30–51 (2014)

    Article  CAS  Google Scholar 

  14. D. Deng et al., Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23(5), 1188–1193 (2011)

    Article  CAS  Google Scholar 

  15. M. Deschamps et al., Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Nat. Mater. 12(4), 351–358 (2013)

    Article  CAS  Google Scholar 

  16. Y. Zhu et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011)

    Article  CAS  Google Scholar 

  17. T.M. Dinh et al., High resolution electrochemical micro-capacitors based on oxidized multi-walled carbon nanotubes. J. Phys. 476(1), 012106 (2013)

    Google Scholar 

  18. X. Yang et al., Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145), 534–537 (2013)

    Article  CAS  Google Scholar 

  19. J.M. Miller, B. Dunn, Morphology and electrochemistry of ruthenium/carbon aerogel nanostructures. Langmuir 15(15), 799–806 (1999)

    Article  CAS  Google Scholar 

  20. F. Wang et al., Nitrogen-doped carbon nanofiber decorated LiFePO4 composites with superior performance for lithium-ion batteries. Ionics 22​(3), 333–340 (2016)

    Article  CAS  Google Scholar 

  21. K. Jurewicz et al., Supercapacitors from nanotubes/polypyrrole composites. Chem. Phys. Lett. 347(1), 36–40 (2001)

    Article  CAS  Google Scholar 

  22. D.W. Wang et al., Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions. Chemistry 18(17), 5345–5351 (2012)

    Article  CAS  Google Scholar 

  23. K. Wu, Q. Liu, Nitrogen-doped mesoporous carbons for high performance supercapacitors. Appl. Surf. Sci. 379, 132–139 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by the Shenzhen basic research (JCYJ20150417142356651) and the National Natural Science Foundation of China (51572202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Wu, K., Liu, Q. et al. Synthesis of N-doped mesoporous carbons under different carbonization temperature and their application in supercapacitors. J Porous Mater 25, 503–509 (2018). https://doi.org/10.1007/s10934-017-0462-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0462-6

Keywords

Navigation