Advertisement

N∆89 and C∆274 Truncated Enzymes of Chondroitinase ABC I Regain More Imperturbable Microenvironments Around Structural Components in Comparison to their Wild Type

  • Hossein Omidi-Ardali
  • Mahdi AminianEmail author
  • Abolfazl GolestaniEmail author
  • Mohammad Esmaeil Shahaboddin
  • Monireh Maleki
Article
  • 27 Downloads

Abstract

Immune response stimulation and inactivation of chondroitinase ABC I in physiological condition have been limited its use in various clinical conditions as a bacterial enzyme drug. In the present study, we have investigated some structural and functional features of N∆89, C∆274 and N∆89C∆274; three designed truncated cABC I, in order to clarify the unclear role of two terminal parts of cABC I i.e., the 1–89 and 747–1021 amino acids sequences of the full length enzyme through truncation. As a result, the numbers of potential epitopes, the susceptibility to trypsin digestion, ANS fluorescence spectra, and fluorescence quenching using KI and acrylamide were diminished for N∆89 and C∆274 in comparison to the wild type. Secondary and tertiary structure investigation for N∆89 and C∆274 revealed that the intrinsic fluorescence was increased and Far-UV CD spectra were changed accordingly. Relative to the wild type enzyme, 0.164, 0.195 remaining activity and lack of activity was shown with the zymographic assay for N∆89, C∆274 and N∆89C∆274 variants, respectively. The diminished enzyme activity and structural changes suggested a reorientation of microenvironments interactions including cation–π interactions around structural elements toward lowering regional mobility. Constructing applicable truncated cABC I with improved features could be regarded as a strategy to regain new possible functional advantages over the full length enzyme.

Keywords

Truncated cABC I Zymographic assay Fluorescence quenching Protein structural elements 

Abbreviations

cABC I

Chondroitinase ABC I

cAC

Chondroitinase AC

PIC

Protein interaction calculator

LB

Luria–Bertani

IPTG

Isopropyl-ß-d-thiogalactopyranoside

PMSF

Phenylmethanesulfonyl fluoride

DAB

3,3′-Diaminobenzidine

SDS-PAGE

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

ANS

8-Anilinonaphthalene-1-sulfonic acid

Notes

Acknowledgements

Financial support for this work was provided by Research Council of Tehran University of Medical Sciences under Contract Number of 29977.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640CrossRefGoogle Scholar
  2. 2.
    Kasinathan N, Volety SM, Josyula VR (2016) Chondroitinase: a promising therapeutic enzyme. Crit Rev Microbiol 42(3):474–484Google Scholar
  3. 3.
    Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298(5596):1248–1251CrossRefGoogle Scholar
  4. 4.
    Denholm EM, Lin Y-Q, Silver PJ (2001) Anti-tumor activities of chondroitinase AC and chondroitinase B: inhibition of angiogenesis, proliferation and invasion. Eur J Pharmacol 416(3):213–221CrossRefGoogle Scholar
  5. 5.
    Tester NJ, Plaas AH, Howland DR (2007) Effect of body temperature on chondroitinase ABC’s ability to cleave chondroitin sulfate glycosaminoglycans. J Neurosci Res 85(5):1110–1118CrossRefGoogle Scholar
  6. 6.
    Maleki M, Khajeh K, Amanlou M, Golestani A (2017) Role of His-His interaction in Ser 474-His 475-Tyr 476 sequence of chondroitinase ABC I in the enzyme activity and stability. Int J Biol Macromol.  https://doi.org/10.1016/j.ijbiomac.2017.11.075 Google Scholar
  7. 7.
    Nazari-Robati M, Khajeh K, Aminian M, Fathi-Roudsari M, Golestani A (2012) Co-solvent mediated thermal stabilization of chondroitinase ABC I form Proteus vulgaris. Int J Biol Macromol 50(3):487–492CrossRefGoogle Scholar
  8. 8.
    Nazari-Robati M, Khajeh K, Aminian M, Mollania N, Golestani A (2013) Enhancement of thermal stability of chondroitinase ABC i by site-directed mutagenesis: an insight from Ramachandran plot. Biochim Biophys Acta (BBA)-Proteins Proteom 1834(2):479–486CrossRefGoogle Scholar
  9. 9.
    Shahaboddin ME, Khajeh K, Maleki M, Golestani A (2017) Improvement of activity and stability of Chondroitinase ABC I by introducing an aromatic cluster at the surface of protein. Enzyme Microb Technol 105:38–44CrossRefGoogle Scholar
  10. 10.
    Shirdel SA, Khalifeh K, Golestani A, Ranjbar B, Khajeh K (2015) Critical role of a loop at C-terminal domain on the conformational stability and catalytic efficiency of chondroitinase ABC I. Mol Biotechnol 57(8):727–734CrossRefGoogle Scholar
  11. 11.
    Pakulska MM, Vulic K, Shoichet MS (2013) Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel. J Controlled Release 171(1):11–16CrossRefGoogle Scholar
  12. 12.
    Shahaboddin ME, Khajeh K, Golestani A (2018) Establishment of aromatic pairs at the surface of chondroitinase ABC I: the effect on activity and stability. Appl Biochem Biotechnol 186(2):358–370CrossRefGoogle Scholar
  13. 13.
    Bagherieh M, Kheirollahi A, Shahaboddin ME, Khajeh K, Golestani A (2017) Calcium and TNFα additively affect the chondroitinase ABC I activity. Int J Biol Macromol 103:1201–1206CrossRefGoogle Scholar
  14. 14.
    Thompson MJ, Eisenberg D (1999) Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J Mol Biol 290(2):595–604CrossRefGoogle Scholar
  15. 15.
    Gruskin EA, D’souza R, Roy G, Caggiano AO (2016) Proteoglycan degrading mutants for treatment of CNS. Google PatentsGoogle Scholar
  16. 16.
    De Groot AS, Scott DW (2007) Immunogenicity of protein therapeutics. Trends Immunol 28(11):482–490CrossRefGoogle Scholar
  17. 17.
    Onda M (2009) Reducing the immunogenicity of protein therapeutics. Curr Drug Targets 10(2):131–139CrossRefGoogle Scholar
  18. 18.
    Huang W, Boju L, Tkalec L, Su H, Yang H-O, Gunay NS, Linhardt RJ, Kim YS, Matte A, Cygler M (2001) Active site of chondroitin AC lyase revealed by the structure of enzyme–oligosaccharide complexes and mutagenesis. Biochemistry 40(8):2359–2372CrossRefGoogle Scholar
  19. 19.
    Hamai A, Hashimoto N, Mochizuki H, Kato F, Makiguchi Y, Horie K, Suzuki S (1997) Two distinct chondroitin sulfate ABC lyases an endoeliminase yielding tetrasaccharides and an exoeliminase preferentially acting on oligosaccharides. J Biol Chem 272(14):9123–9130CrossRefGoogle Scholar
  20. 20.
    Huang W, Lunin V, Li Y, Suzuki S, Sugiura N, Miyazono H, Cygler M (2003) Crystal structure of Proteus vulgaris chondroitin sulfate ABC lyase I at 1.9 Å resolution. J Mol Biol 328(3):623–634CrossRefGoogle Scholar
  21. 21.
    Shaya D, Hahn B-S, Bjerkan TM, Kim WS, Park NY, Sim J-S, Kim Y-S, Cygler M (2008) Composite active site of chondroitin lyase ABC accepting both epimers of uronic acid. Glycobiology 18(3):270–277CrossRefGoogle Scholar
  22. 22.
    Chen Z, Li Y, Feng Y, Chen L, Yuan Q (2015) Enzyme activity enhancement of chondroitinase ABC I from Proteus vulgaris by site-directed mutagenesis. RSC Adv 5(93):76040–76047CrossRefGoogle Scholar
  23. 23.
    Dmitrieva N, Yu L, Viapiano M, Cripe TP, Chiocca EA, Glorioso JC, Kaur B (2011) Chondroitinase ABC I–mediated enhancement of oncolytic virus spread and antitumor efficacy. Clin Cancer Res 17(6):1362–1372CrossRefGoogle Scholar
  24. 24.
    Mohammadi M, Sepehrizadeh Z, Ebrahim-Habibi A, Shahverdi AR, Faramarzi MA, Setayesh N (2015) Bacterial expression and characterization of an active recombinant lipase A from Serratia marcescens with truncated C-terminal region. J Mol Catal B 120:84–92CrossRefGoogle Scholar
  25. 25.
    Prabhakar V, Capila I, Carlos J, Pojasek K, Sasisekharan R (2005) Chondroitinase ABC I from Proteus vulgaris: cloning, recombinant expression and active site identification. Biochem J 386(1):103–112CrossRefGoogle Scholar
  26. 26.
    Prabhakar V, Capila I, Raman R, Bosques C, Pojasek K, Sasisekharan R (2012) Chondroitinase ABC I and methods of degrading therewith. Google PatentsGoogle Scholar
  27. 27.
    Prabhakar V, Raman R, Capila I, Bosques CJ, Pojasek K, Sasisekharan R (2005) Biochemical characterization of the chondroitinase ABC I active site. Biochem J 390(2):395–405CrossRefGoogle Scholar
  28. 28.
    Asad S, Dabirmanesh B, Ghaemi N, Etezad SM, Khajeh K (2013) Studies on the refolding process of recombinant horseradish peroxidase. Mol Biotechnol 54(2):484–492CrossRefGoogle Scholar
  29. 29.
    Miura RO, Yamagata S, Miura Y, Harada T, Yamagata T (1995) Analysis of glycosaminoglycan-degrading enzymes by substrate gel electrophoresis (zymography). Anal Biochem 225(2):333–340CrossRefGoogle Scholar
  30. 30.
    Vandooren J, Geurts N, Martens E, Van den Steen PE, Opdenakker G (2013) Zymography methods for visualizing hydrolytic enzymes. Nat Methods 10(3):211–220CrossRefGoogle Scholar
  31. 31.
    Böhm G, Muhr R, Jaenicke R (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng Des Sel 5(3):191–195CrossRefGoogle Scholar
  32. 32.
    Gasymov OK, Glasgow BJ (2007) ANS fluorescence: potential to augment the identification of the external binding sites of proteins. Biochim Biophys Acta (BBA)-Proteins Proteom 1774(3):403–411CrossRefGoogle Scholar
  33. 33.
    Gandorfer A (2008) Enzymatic vitreous disruption. Eye 22(10):1273–1277CrossRefGoogle Scholar
  34. 34.
    Arjomand MR, Habibi-Rezaei M, Ahmadian G, Hassanzadeh M, Karkhane AA, Asadifar M, Amanlou M (2016) Deletion of loop fragment adjacent to active site diminishes the stability and activity of exo-inulinase. Int J Biol Macromol 92:1234–1241CrossRefGoogle Scholar
  35. 35.
    Chi M-C, Chen Y-H, Wu T-J, Lo H-F, Lin L-L (2010) Engineering of a truncated α-amylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and oxidative stabilities. J Biosci Bioeng 109(6):531–538CrossRefGoogle Scholar
  36. 36.
    Hai T, Lee J-S, Kim T-J, Suh J-W (2009) The role of the C-terminal region of cyanophycin synthetase from Nostoc ellipsosporum NE1 in its enzymatic activity and thermostability: a key function of Glu 856. Biochim Biophys Acta (BBA)-Proteins Proteom 1794 (1):42–49CrossRefGoogle Scholar
  37. 37.
    Kim Y-M, Shimizu R, Nakai H, Mori H, Okuyama M, Kang M-S, Fujimoto Z, Funane K, Kim D, Kimura A (2011) Truncation of N-and C-terminal regions of Streptococcus mutans dextranase enhances catalytic activity. Appl Microbiol Biotechnol 91(2):329–339CrossRefGoogle Scholar
  38. 38.
    Miyamura N, Araki E, Matsuda K, Yoshimura R, Furukawa N, Tsuruzoe K, Shirotani T, Kishikawa H, Yamaguchi K, Shichiri M (1996) A carboxy-terminal truncation of human alpha-galactosidase A in a heterozygous female with Fabry disease and modification of the enzymatic activity by the carboxy-terminal domain. Increased, reduced, or absent enzyme activity depending on number of amino acid residues deleted. J Clin Investig 98(8):1809CrossRefGoogle Scholar
  39. 39.
    Valušová E, Sedlák E, Antalík M, Nock S, Sprinzl M (2001) Effect of N-domain on the stability of elongation factor Ts from Thermus thermophilus. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol 1547 (1):117–126CrossRefGoogle Scholar
  40. 40.
    Vihinen M, Peltonen T, Iitiä A, Suominen I, Mäntsälä P (1994) C-terminal truncations of a thermostable Bacillus stearothermophilus α-amylase. Protein Eng Des Sel 7(10):1255–1259CrossRefGoogle Scholar
  41. 41.
    Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25(7):1487–1499CrossRefGoogle Scholar
  42. 42.
    Fontana A, de Laureto PP, De Filippis V, Scaramella E, Zambonin M (1997) Probing the partly folded states of proteins by limited proteolysis. Fold Des 2(2):R17–R26CrossRefGoogle Scholar
  43. 43.
    Hubbard SJ (1998) The structural aspects of limited proteolysis of native proteins. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol 1382(2):191–206CrossRefGoogle Scholar
  44. 44.
    Eftink MR, Ghiron C (1976) Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry 15(3):672–680CrossRefGoogle Scholar
  45. 45.
    Phillips S, Wilson L, Borkman R (1986) Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins. Curr Eye Res 5(8):611–620CrossRefGoogle Scholar
  46. 46.
    Crowley PB, Golovin A (2005) Cation–π interactions in protein–protein interfaces. Proteins: Struct Funct Bioinform 59(2):231–239CrossRefGoogle Scholar
  47. 47.
    Gallivan JP, Dougherty DA (1999) Cation-π interactions in structural biology. Proc Natl Acad Sci 96(17):9459–9464CrossRefGoogle Scholar
  48. 48.
    Marcelino AMC, Gierasch LM (2008) Roles of β-turns in protein folding: from peptide models to protein engineering. Biopolymers 89(5):380–391CrossRefGoogle Scholar
  49. 49.
    Fields PA (2001) Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A 129(2–3):417–431CrossRefGoogle Scholar
  50. 50.
    Gutteridge A (2005) Understanding the relationship between enzyme structure and catalysis. University of CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
  2. 2.Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical SciencesKashanIran

Personalised recommendations