Skip to main content
Log in

Properties and Biodegradation of Thermoplastic Starch Obtained from Grafted Starches with Poly(lactic acid)

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

A Correction to this article was published on 13 February 2020

This article has been updated

Abstract

Properties and biodegradation of thermoplastic starch obtained using granular starches grafted with poly(lactic acid) (St-g-PLA) were studied. The grafting of PLA on the starch granule was verified by the emergence of the carbonyl group in the FTIR spectra and the higher diameter of the grafted starch granule. Thermoplastic starch from ungrafted granular starch (TPS) and grafted granular starch (TPGS) were obtained by mixing ungrafted or grafted starch with water, glycerol or sorbitol in a mixer. TPS and TPGS behave as plastic materials, and their mechanical properties depend on the type of plasticizer used. Materials with glycerol as the plasticizer exhibited less rigidity than the materials obtained using sorbitol. The presence of starch-g-PLA results in an increase in the elongation of the thermoplastic material. TPS and TPGS were hydrolysed by amylolytic enzymes in short-time periods compared to granular PLA-grafted starches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 13 February 2020

    The original version of this article unfortunately contained an error in Reference 7. The correct reference 7 should read as the following,

  • 13 February 2020

    The original version of this article unfortunately contained an error in Reference 7. The correct reference 7 should read as the following,

References

  1. Zuo Y, He X, Li P, Li W, Wu Y (2019) Polymers 11:72. https://doi.org/10.3390/polym11010072

    Article  CAS  PubMed Central  Google Scholar 

  2. Salimi K, Şen SC, Ersan HY, Pişkin E (2017) J Appl Polym Sci 134:44490. https://doi.org/10.1002/app.44490

    Article  CAS  Google Scholar 

  3. Zain AHM, Wahab MK, Ismail H (2017) J Polym Environ 26:691–700. https://doi.org/10.1007/s10924-017-0978-5

    Article  CAS  Google Scholar 

  4. Gong Q, Wang L-Q, Tu K (2006) Carbohydr Polym 64:501

    CAS  Google Scholar 

  5. Ibrahim N, Ab Wahab MK, Uylan DN, Ismail H (2017) BioResources 12:3076

    CAS  Google Scholar 

  6. Lu DR, Xiao CM, Xu SJ (2009) Express Polym Lett 3:366

    CAS  Google Scholar 

  7. Esmaeli M, Pircheraghi G, Bagheri R, Altstädt V (2019) Polym Adv Technol 30:839

    Google Scholar 

  8. Arboleda GA, Montilla CE, Villada HS, Varona GA (2015) Int J Polym Sci 2015:1

    Google Scholar 

  9. Schmitt H, Guidez A, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2015) Carbohydr Polym 115:364

    CAS  PubMed  Google Scholar 

  10. Ren J, Fu H, Ren T, Yuan W (2009) Carbohydr Polym 77:576

    CAS  Google Scholar 

  11. Chen L, Qiu X, Deng M, Hong Z, Luo R, Chen X, Jing X (2005) Polymer 46:5723

    CAS  Google Scholar 

  12. Vikman M, Hulleman SHD, Van Der Zee M, Myllärinen P, Feil H (1999) J Appl Polym Sci 74:2594

    CAS  Google Scholar 

  13. Aranda-García FJ, González-Núñez R, Jasso-Gastinel CF, Mendizábal E (2015) Int J Polym Sci 2015:1

    Google Scholar 

  14. Carmona VB, Corrêa AC, Marconcini JM, Mattoso LHC (2015) J Polym Environ 23:83

    CAS  Google Scholar 

  15. Tena-Salcido CS, Rodríguez-González FJ, Méndez-Hernández ML, Contreras-Esquivel JC (2008) Polym Bull 60:677

    CAS  Google Scholar 

  16. Li H, Huneault MA (2011) J Appl Polym Sci 119:2439

    CAS  Google Scholar 

  17. Kaewtatip K, Tanrattanakul V, Szécsényi KM, Pavlicevic J, Budinski-Simendic J (2010) J Thermal Anal Calorim 102:1035

    CAS  Google Scholar 

  18. Canché-Escamilla G, Canché-Canché M, Duarte-Aranda S, Cáceres-Farfán M, Borges-Argáez R (2011) Carbohydr Polym 86:1501

    Google Scholar 

  19. Li M-C, Lee JK, Cho UR (2012) J Appl Polym Sci 125:405

    CAS  Google Scholar 

  20. Rutot D, Degée P, Narayan R, Dubois P (2000) Compos Interfaces 7:215

    CAS  Google Scholar 

  21. Ferrarezi MMF, de Oliveira Taipina M, Escobar da Silva LC, Gonçalves MdC (2013) J Polym Environ 21:151

    CAS  Google Scholar 

  22. Xu Q, Wang Q, Liu L (2008) J Appl Polym Sci 107:2704

    CAS  Google Scholar 

  23. Inkinen S, Hakkarainen M, Albertsson A-C, Södergård A (2011) Biomacromol 12:523

    CAS  Google Scholar 

  24. Zerroukhi A, Jeanmaire T, Raveyre C, Ainser A (2012) Starch/Stärke 64:613

    CAS  Google Scholar 

  25. Najemi L, Jeanmaire T, Zerroukhi A, Raihane M (2010) Starch/Stärke 62:147

    CAS  Google Scholar 

  26. Shao J, Zhao J, Zhao Y, Yan Y, Qiu Z (2013) Polym Bull 70:59

    CAS  Google Scholar 

  27. Vera-Pacheco M, Vázquez-Torres H, Canché-Escamilla G (1993) J Appl Polym Sci 47:53

    CAS  Google Scholar 

  28. ASTM (2014) ASTM International, West Conshohocken, PA

  29. Moreno-Chulim MV, Barahona-Pérez F, Canché-Escamilla G (2003) J Appl Polym Sci 89:2764

    CAS  Google Scholar 

  30. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and raman spectroscopy. Elsevier, New York, pp 218–440

    Google Scholar 

  31. Xie XS, Liu Q, Cui SW (2006) Food Res Int 39:332

    CAS  Google Scholar 

  32. Casarrubias-Castillo MG, Méndez-Montealvo G, Rodríguez-Ambriz SL, Sánchez-Rivera MM, Bello-Pérez LA (2012) Agrociencia (Montecillo) 46:455

    Google Scholar 

  33. Araújo MA, Cunha AM, Mota M (2004) Biomaterials 25:2687

    PubMed  Google Scholar 

  34. Azevedo HS, Reis RL (2005) In: Reis RL, San Román J (eds) Biodegradable systems in tissue engineering and regenerative medicine. CRC Press, Boca Ratón, pp 177–201

    Google Scholar 

  35. Dumoulin Y, Cartilier LH, Mateescu MA (1999) J Control Release 60:161

    CAS  PubMed  Google Scholar 

  36. Esmaeili M, Pircheraghi G, Bagheri R (2017) Polym Int 66:809–819

    CAS  Google Scholar 

  37. Fang J, Fowler P (2003) J Food Agric Environ 1:82

    CAS  Google Scholar 

  38. Forssell PM, Mikkilä JM, Moates GK, Parker R (1997) Carbohydr Polym 34:275

    CAS  Google Scholar 

  39. Van Soest JJG, Essers P (1997) J Macromol Sci A 34:1665

    Google Scholar 

  40. Van Soest JJG, Hulleman SHD, De Wit D, Vliegenthart JFG (1996) Ind Crops Prod 5:11

    Google Scholar 

  41. Van Soest JJG, Benes K, de Wit D, Vliegenthart JFG (1996) Polymer 37:3543

    Google Scholar 

  42. Van Soest JJG, De Wit D, Vliegenthart JFG (1996) J Appl Polym Sci 61:1927

    Google Scholar 

  43. Van Soest JJG (1996) Starch plastics: structure-property relationships. P&L Press, Universiteit Utrecht, Wageningen, pp. 168

    Google Scholar 

  44. Hulleman SHD, Janssen FHP, Feil H (1998) Polymer 39:2043

    CAS  Google Scholar 

  45. Da Ro´z AL. Carvalho AJF, Gandini A, Curvelo AAS (2006) Carbohydr Polym 63:417

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Council of Science and Technology in México (CONACyT) for financial support of the Ph.D. thesis of one of the authors (Cuevas-Carballo, Z. B.). The X-ray diffraction analysis was performed at the National Laboratory of Nano and Biomaterials (financed by Fomix-Yucatán and CONACyT), CINVESTAV-IPN. Mérida Unit. We thank Dr. Patricia Quintana for access to LANNBIO and M. C. Daniel Aguilar for technical support in obtaining the diffractograms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Canché-Escamilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuevas-Carballo, Z.B., Duarte-Aranda, S. & Canché-Escamilla, G. Properties and Biodegradation of Thermoplastic Starch Obtained from Grafted Starches with Poly(lactic acid). J Polym Environ 27, 2607–2617 (2019). https://doi.org/10.1007/s10924-019-01540-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01540-w

Keywords

Navigation