Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 11, pp 2607–2617 | Cite as

Properties and Biodegradation of Thermoplastic Starch Obtained from Grafted Starches with Poly(lactic acid)

  • Z. B. Cuevas-Carballo
  • S. Duarte-Aranda
  • G. Canché-EscamillaEmail author
Original paper
  • 33 Downloads

Abstract

Properties and biodegradation of thermoplastic starch obtained using granular starches grafted with poly(lactic acid) (St-g-PLA) were studied. The grafting of PLA on the starch granule was verified by the emergence of the carbonyl group in the FTIR spectra and the higher diameter of the grafted starch granule. Thermoplastic starch from ungrafted granular starch (TPS) and grafted granular starch (TPGS) were obtained by mixing ungrafted or grafted starch with water, glycerol or sorbitol in a mixer. TPS and TPGS behave as plastic materials, and their mechanical properties depend on the type of plasticizer used. Materials with glycerol as the plasticizer exhibited less rigidity than the materials obtained using sorbitol. The presence of starch-g-PLA results in an increase in the elongation of the thermoplastic material. TPS and TPGS were hydrolysed by amylolytic enzymes in short-time periods compared to granular PLA-grafted starches.

Keywords

Grafted starch Poly(lactic acid) Thermoplastic starch Mechanical properties Enzymatic degradation 

Notes

Acknowledgements

The authors wish to thank the National Council of Science and Technology in México (CONACyT) for financial support of the Ph.D. thesis of one of the authors (Cuevas-Carballo, Z. B.). The X-ray diffraction analysis was performed at the National Laboratory of Nano and Biomaterials (financed by Fomix-Yucatán and CONACyT), CINVESTAV-IPN. Mérida Unit. We thank Dr. Patricia Quintana for access to LANNBIO and M. C. Daniel Aguilar for technical support in obtaining the diffractograms.

References

  1. 1.
    Zuo Y, He X, Li P, Li W, Wu Y (2019) Polymers 11:72.  https://doi.org/10.3390/polym11010072 CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Salimi K, Şen SC, Ersan HY, Pişkin E (2017) J Appl Polym Sci 134:44490.  https://doi.org/10.1002/app.44490 CrossRefGoogle Scholar
  3. 3.
    Zain AHM, Wahab MK, Ismail H (2017) J Polym Environ 26:691–700.  https://doi.org/10.1007/s10924-017-0978-5 CrossRefGoogle Scholar
  4. 4.
    Gong Q, Wang L-Q, Tu K (2006) Carbohydr Polym 64:501CrossRefGoogle Scholar
  5. 5.
    Ibrahim N, Ab Wahab MK, Uylan DN, Ismail H (2017) BioResources 12:3076CrossRefGoogle Scholar
  6. 6.
    Lu DR, Xiao CM, Xu SJ (2009) Express Polym Lett 3:366CrossRefGoogle Scholar
  7. 7.
    Esmaeli M, Pircheraghi G, Bagheri R, Altstädt V (2019) Polym Adv Technol 30:839CrossRefGoogle Scholar
  8. 8.
    Arboleda GA, Montilla CE, Villada HS, Varona GA (2015) Int J Polym Sci 2015:1CrossRefGoogle Scholar
  9. 9.
    Schmitt H, Guidez A, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2015) Carbohydr Polym 115:364CrossRefGoogle Scholar
  10. 10.
    Ren J, Fu H, Ren T, Yuan W (2009) Carbohydr Polym 77:576CrossRefGoogle Scholar
  11. 11.
    Chen L, Qiu X, Deng M, Hong Z, Luo R, Chen X, Jing X (2005) Polymer 46:5723CrossRefGoogle Scholar
  12. 12.
    Vikman M, Hulleman SHD, Van Der Zee M, Myllärinen P, Feil H (1999) J Appl Polym Sci 74:2594CrossRefGoogle Scholar
  13. 13.
    Aranda-García FJ, González-Núñez R, Jasso-Gastinel CF, Mendizábal E (2015) Int J Polym Sci 2015:1CrossRefGoogle Scholar
  14. 14.
    Carmona VB, Corrêa AC, Marconcini JM, Mattoso LHC (2015) J Polym Environ 23:83CrossRefGoogle Scholar
  15. 15.
    Tena-Salcido CS, Rodríguez-González FJ, Méndez-Hernández ML, Contreras-Esquivel JC (2008) Polym Bull 60:677CrossRefGoogle Scholar
  16. 16.
    Li H, Huneault MA (2011) J Appl Polym Sci 119:2439CrossRefGoogle Scholar
  17. 17.
    Kaewtatip K, Tanrattanakul V, Szécsényi KM, Pavlicevic J, Budinski-Simendic J (2010) J Thermal Anal Calorim 102:1035CrossRefGoogle Scholar
  18. 18.
    Canché-Escamilla G, Canché-Canché M, Duarte-Aranda S, Cáceres-Farfán M, Borges-Argáez R (2011) Carbohydr Polym 86:1501CrossRefGoogle Scholar
  19. 19.
    Li M-C, Lee JK, Cho UR (2012) J Appl Polym Sci 125:405CrossRefGoogle Scholar
  20. 20.
    Rutot D, Degée P, Narayan R, Dubois P (2000) Compos Interfaces 7:215CrossRefGoogle Scholar
  21. 21.
    Ferrarezi MMF, de Oliveira Taipina M, Escobar da Silva LC, Gonçalves MdC (2013) J Polym Environ 21:151CrossRefGoogle Scholar
  22. 22.
    Xu Q, Wang Q, Liu L (2008) J Appl Polym Sci 107:2704CrossRefGoogle Scholar
  23. 23.
    Inkinen S, Hakkarainen M, Albertsson A-C, Södergård A (2011) Biomacromol 12:523CrossRefGoogle Scholar
  24. 24.
    Zerroukhi A, Jeanmaire T, Raveyre C, Ainser A (2012) Starch/Stärke 64:613CrossRefGoogle Scholar
  25. 25.
    Najemi L, Jeanmaire T, Zerroukhi A, Raihane M (2010) Starch/Stärke 62:147CrossRefGoogle Scholar
  26. 26.
    Shao J, Zhao J, Zhao Y, Yan Y, Qiu Z (2013) Polym Bull 70:59CrossRefGoogle Scholar
  27. 27.
    Vera-Pacheco M, Vázquez-Torres H, Canché-Escamilla G (1993) J Appl Polym Sci 47:53CrossRefGoogle Scholar
  28. 28.
    ASTM (2014) ASTM International, West Conshohocken, PAGoogle Scholar
  29. 29.
    Moreno-Chulim MV, Barahona-Pérez F, Canché-Escamilla G (2003) J Appl Polym Sci 89:2764CrossRefGoogle Scholar
  30. 30.
    Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and raman spectroscopy. Elsevier, New York, pp 218–440Google Scholar
  31. 31.
    Xie XS, Liu Q, Cui SW (2006) Food Res Int 39:332CrossRefGoogle Scholar
  32. 32.
    Casarrubias-Castillo MG, Méndez-Montealvo G, Rodríguez-Ambriz SL, Sánchez-Rivera MM, Bello-Pérez LA (2012) Agrociencia (Montecillo) 46:455Google Scholar
  33. 33.
    Araújo MA, Cunha AM, Mota M (2004) Biomaterials 25:2687CrossRefGoogle Scholar
  34. 34.
    Azevedo HS, Reis RL (2005) In: Reis RL, San Román J (eds) Biodegradable systems in tissue engineering and regenerative medicine. CRC Press, Boca Ratón, pp 177–201Google Scholar
  35. 35.
    Dumoulin Y, Cartilier LH, Mateescu MA (1999) J Control Release 60:161CrossRefGoogle Scholar
  36. 36.
    Esmaeili M, Pircheraghi G, Bagheri R (2017) Polym Int 66:809–819CrossRefGoogle Scholar
  37. 37.
    Fang J, Fowler P (2003) J Food Agric Environ 1:82Google Scholar
  38. 38.
    Forssell PM, Mikkilä JM, Moates GK, Parker R (1997) Carbohydr Polym 34:275CrossRefGoogle Scholar
  39. 39.
    Van Soest JJG, Essers P (1997) J Macromol Sci A 34:1665CrossRefGoogle Scholar
  40. 40.
    Van Soest JJG, Hulleman SHD, De Wit D, Vliegenthart JFG (1996) Ind Crops Prod 5:11CrossRefGoogle Scholar
  41. 41.
    Van Soest JJG, Benes K, de Wit D, Vliegenthart JFG (1996) Polymer 37:3543CrossRefGoogle Scholar
  42. 42.
    Van Soest JJG, De Wit D, Vliegenthart JFG (1996) J Appl Polym Sci 61:1927CrossRefGoogle Scholar
  43. 43.
    Van Soest JJG (1996) Starch plastics: structure-property relationships. P&L Press, Universiteit Utrecht, Wageningen, pp. 168Google Scholar
  44. 44.
    Hulleman SHD, Janssen FHP, Feil H (1998) Polymer 39:2043CrossRefGoogle Scholar
  45. 45.
    Da Ro´z AL. Carvalho AJF, Gandini A, Curvelo AAS (2006) Carbohydr Polym 63:417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Investigación Científica de YucatánMéridaMexico

Personalised recommendations