Influence of Filler Particle Size on Physical Properties and Biodegradation of Biocomposites Based on Low-Density Polyethylene and Lignocellulosic Fillers

  • A. K. Zykova
  • P. V. Pantyukhov
  • N. N. Kolesnikova
  • T. V. Monakhova
  • A. A. Popov
Original Paper

Abstract

This study examined biocomposites based on low-density polyethylene (LDPE) and lignocellulosic fillers [wood flour (WF) and oil flax straw (FS)] selecting four size fractions of each lignocellulosic material as fillers for the composites. The primary aim was to evaluate the influence of fraction size on the composites’ basic properties; to accomplish this, the composites’ mechanical properties, thermal oxidation, thermophysical characteristics, and water absorption capacity were examined. Then microphotographs of the samples were created and length-to-diameter (L/D) ratio of the fillers was calculated, finding that the L/D ratio increased with increasing particle size. The particle size influenced the oxidative degradation and water absorption processes in composites with oil flax but not in those with WF. Biodegradation tests performed on the recovered soil found that the loss of mass in composites based on LDPE and FS was higher than in the same composites with WF. Moreover, at the initial stage of composting, the biodegradation rate correlated with the size of filler particles (i.e., the larger the particles, the higher the degradation rate of the biocomposite).

Keywords

Low-density polyethylene Lignocellulosic fillers Wood flour Flax straw Biocomposites Natural fibers Biodegradation Biodegradable polymer composites 

References

  1. 1.
    Pantyukhov P, Kolesnikova N, Popov A (2016) Polym Compos 37:1461CrossRefGoogle Scholar
  2. 2.
    Mastalygina EE, Kolesnikova NN, Popov AA, Olkhov AA (2015) AIP Conf Proc 1683:020143. doi:10.1063/1.4932833 CrossRefGoogle Scholar
  3. 3.
    Zykova AK, Pantyukhov PV, Popov AA (2017) J Polym Eng Sci. doi:10.1002/pen.24626 Google Scholar
  4. 4.
    Robertson N-LM, Nychka JA, Alemaskin K, Wolodko JD (2013) J Appl Polym Sci 130:969CrossRefGoogle Scholar
  5. 5.
    Altun Y, Dogan M, Bayramli M (2013) J Polym Environ 21:850CrossRefGoogle Scholar
  6. 6.
    Arbelaiz A, Fernandez B, Cantero G, Llano-Ponte R, Valea A, Mondragon I (2005) Compos A 36:1637CrossRefGoogle Scholar
  7. 7.
    Mukherjee P, Kao N (2011) J Polym Environ 19:714CrossRefGoogle Scholar
  8. 8.
    Mirbagheri J, Tajvidi M, Hermanson JC, Ghasemi I (2007) J Appl Polym Sci 105:3054CrossRefGoogle Scholar
  9. 9.
    Thirmizir MZA, Ishak ZAM, Taib RM, Rahim S, Jani SM (2011) J Polym Environ 19:263CrossRefGoogle Scholar
  10. 10.
    Okubo K, Fujii T, Yamamoto Y (2004) Compos A 35:377CrossRefGoogle Scholar
  11. 11.
    Ou R, Zhao H, Sui S, Song Y, Wang Q (2010) Compos A 41:1272CrossRefGoogle Scholar
  12. 12.
    Ou R, Xie Y, Wang, Q Sui S, Wolcott MP (2014) Compos A 61:134CrossRefGoogle Scholar
  13. 13.
    Ornaghi HL Jr, Poletto M, Zattera AJ, Amico SC (2014) Cellulose 21:177CrossRefGoogle Scholar
  14. 14.
    Arauґjo JR, Waldman WR, De Paoli MA (2008) Polym Degrad Stab 93:1770CrossRefGoogle Scholar
  15. 15.
    Ismail H, Rozman HD, Jaffri RM, Ishak ZAM (1997) J Eur Polym 33:1627CrossRefGoogle Scholar
  16. 16.
    Fabiyi JS, McDonald AG (2010) Compos A 41:1434CrossRefGoogle Scholar
  17. 17.
    Bazant P, Munster L, Machovsky M, Sedlak J, Pastorek M, Kozakova Z, Kuritka I (2014) Ind Crop Prod 62:179CrossRefGoogle Scholar
  18. 18.
    Kim H-S, Kim S, Kim H-J, Yang H-S (2006) Thermochim Acta 451:181CrossRefGoogle Scholar
  19. 19.
    Bouza R, Marco C, Naffakh M, Barral L, Ellis G (2011) Compos A 42:935CrossRefGoogle Scholar
  20. 20.
    Faruk O, Sain M (2015) Biofiber reinforcements in composite materials. Woodhead Publishing, CambridgeGoogle Scholar
  21. 21.
    Stark NM, Berger MJ (1997) In: Proceedings of the 4th international conference of wood fiber-plastic composites. Forest Products Society, Madison, pp 134–143Google Scholar
  22. 22.
    Bledzki AK, Faruk O (2003) Appl Compos Mater 10:365CrossRefGoogle Scholar
  23. 23.
    Migneault S, Koubaa A, Erchiqui F, Chaala A, Englund K, Krause C, Wolcott M (2008) J Appl Polym Sci 110:1085CrossRefGoogle Scholar
  24. 24.
    Nikitin VM, Obolenskaya AV, Schegolev VP (1978) Chemistry of wood and cellulose. Wood Industry, MoscowGoogle Scholar
  25. 25.
    Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinGoogle Scholar
  26. 26.
    Heuzé V, Tran G, Lebas F (2015) Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. http://www.feedipedia.org/node/132
  27. 27.
    Rebole A, Alvira P, Gonzalez G (1989) J Sci Food Agric 48:141CrossRefGoogle Scholar
  28. 28.
    Shlyapnikov YA, Kiryushkin SG, Mar’in AP (1986) Antioxidative stability of polymers, Chemistry, Moscow (in Russian)Google Scholar
  29. 29.
    Emanuel NM, Denisov ET, Maizus ZK (1967) Liquid-phase oxidation of hydrocarbons. Plenum Press, New York, pp 9–10Google Scholar
  30. 30.
    Monakhova TV, Nedorezova PM, Shlyapnikov YuA (2005) J Appl Polym Sci 99:808CrossRefGoogle Scholar
  31. 31.
    Ozcelik O, Aktas L, Altan MC (2009) Express Polym Lett 12:797CrossRefGoogle Scholar
  32. 32.
    Chelina MC (2013) Polym Degrad Stab 12:2419CrossRefGoogle Scholar
  33. 33.
    American Standard ASTM D 5988-12 (2012) Standard test method for determining aerobic biodegradation of plastic materials in soil. ASTM International, West ConshohockenGoogle Scholar
  34. 34.
    Ottenbrite R et al (1996) Hydrogels and biodegradable polymers for bioapplications. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  35. 35.
    Zykova AK, Pantyukhov PV, Kolesnikova NN, Popov AA, Olkhov AA (2015) AIP Conf Proc 1683:020242. doi:10.1063/1.4932932 CrossRefGoogle Scholar
  36. 36.
    Nourbakhsh A, Karegarfard A, Ashori A, Nourbakhsh A (2010) J Thermoplast Compos Mater 23:169CrossRefGoogle Scholar
  37. 37.
    Balasuriya PW, Ye L, Mai YW (2001) Compos A 32: 619CrossRefGoogle Scholar
  38. 38.
    Göpferich A (1996) Biomaterials 17:103CrossRefGoogle Scholar
  39. 39.
    Olkhov AA, Iordanskii AI, Shibryaeva LS, Tertyshnaya YuV (2015) Russ J Phys Chem B 9:652CrossRefGoogle Scholar
  40. 40.
    Fakhrul T, Islam MA (2013), Procedia Eng 56:795CrossRefGoogle Scholar
  41. 41.
    Russian Industrial Standard 16337-77 (1977) High-pressure polyethylene. Specifications (in Russian)Google Scholar
  42. 42.
    Bayerl T, Geith M, Somashekar AA, Bhattacharayya D (2014) Int Biodeter Biodegr 96:18CrossRefGoogle Scholar
  43. 43.
    Espert A, Vilaplana F, Karlsson S (2004) Compos A 35:1267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. K. Zykova
    • 1
    • 2
  • P. V. Pantyukhov
    • 1
    • 2
  • N. N. Kolesnikova
    • 2
  • T. V. Monakhova
    • 2
  • A. A. Popov
    • 1
    • 2
  1. 1.Plekhanov Russian University of EconomicsMoscowRussia
  2. 2.Emanuel Institute of Biochemical Physics of Russian Academy of SciencesMoscowRussia

Personalised recommendations