Advertisement

Journal of Mammalian Evolution

, Volume 25, Issue 3, pp 339–379 | Cite as

The European Mesonychid Mammals: Phylogeny, Ecology, Biogeography, and Biochronology

  • Floréal Solé
  • Marc Godinot
  • Yves Laurent
  • Alain Galoyer
  • Thierry Smith
Original Paper

Abstract

Here we review the fossil record of European mesonychids, which are known only through the genera Dissacus and Pachyaena from Thanetian and Ypresian localities (from MP6 to MP10 reference-levels). We describe two new species, Dissacus rougierae, sp. nov., and Dissacus raslanloubatieri, sp. nov., respectively from Palette (Ypresian, ≈MP7) and from La Borie (Ypresian, ≈MP8 + 9). We also describe new specimens of D. europaeus from Berru (Thanetian, ≈MP6). The evolution of the geographic distribution of the European mesonychids is characterized by three phases: (1) the mesonychid Dissacus appeared in Europe during the Thanetian (≈ 57–58 Mya), probably due to dispersal from North America; D. europaeus survived the PETM event (≈ 56 Mya) and possibly experienced a dwarfism; (2) the large mesonychid Pachyaena migrated into Europe shortly after the Paleocene-Eocene boundary (≈ 55 Mya), but it was restricted to northwestern Europe, while Dissacus is recorded at this time only in southwestern Europe (Palette); and (3) Pachyaena rapidly disappeared from European environments, while Dissacus subsequently dispersed into northwestern Europe (≈ 54–52 Mya). We performed phylogenetic analyses in order to identify the relationships of the new species among mesonychids. It seems that the mesonychids went through two radiative events: the first during the Paleocene, the second mostly during the early Eocene. The first one corresponds to the diversification of Dissacus, while the latter resulted in the appearance of the most specialized mesonychids, such as Pachyaena and Mesonyx.

Keywords

Paleocene Eocene Dwarfism Evolution Dispersal Turnover 

Notes

Acknowledgements

We thank C. Argot, P. Tassy, G. Billet, C. Sagne, P. Vincent (MNHN), Suzanne Jiquel and B. Marandat (Université Montpellier) for access to material. The optical photographs were taken by P. Loubry, L. Cazes (CNRS-MNHN), W. Miseur and E. De Bast (IRSNB). We thank Marta March and Salvador Moyà from ICP for having provided the numbers of the fossils they conserved. We are grateful to APSO volunteers and the Terreal Society, especially L. Nathan who kindly provided permits, help, and support for paleontological research. We thank Mrs. Nicole Verrière, who gave to the MNHN fossils from the collection of her father Mr. Molez, including several Dissacus specimens from Berru. We are greatful to the Rougier family, who facilitated field work in Palette. This work, especially the phylogenetic analysis, benefited from the constructive reviews of one anonymous paleontologist. This research was financially supported by the Federal Science Policy Office of Belgium (Belspo Brain project BR/121/A3/PalEurAfrica).

Compliance with Ethical Standards

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Supplementary material

10914_2016_9371_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 18 kb)
10914_2016_9371_MOESM2_ESM.nex (96 kb)
ESM 2 (NEX 96.4 kb)

References

  1. Antunes MT, Casanovas ML, Cuesta MA, Checa L, Santafé JV, Agustí J (1997) Eocene mammals from Iberian peninsula. In: Aguilar J-P, Legendre S, Michaux J (eds) Actes du colloque international de biostratigraphie BiochroM’97. Mémoires et Travaux de l’EPHE 21. Montpellier: Ecole Pratique des Hautes Etudes, Institut de Montpellier, pp 337–352Google Scholar
  2. Archibald JD (1998) Archaic ungulates (“ Condylarthra”). In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of Tertiary Mammals of North America, Volume I: Terrestrial Carnivores, Ungulates and Ungulatelike Mammals. Cambridge University Press, Cambridge, pp 292–311Google Scholar
  3. Aubry M-P, Thiry M, Dupuis C, Berggren WA (2005) The Sparnacian deposits of the Paris Basin: a lithostratigraphic classification. Stratigraphy 2:65–100Google Scholar
  4. Badiola A, Hooker JJ, Quer R, Checa L, Astibia Ayera H, Cuesta Ruiz-Colmenares MÁ (2009) The role of new Iberian finds in understanding European Eocene mammalian paleobiogeography. Geol Acta 7:0243–258Google Scholar
  5. Beard KC, Wang Y-Q, Meng J, Ni X-J, Gebo DL, Li C-K (2010) Paleocene Hapalodectes (Mammalia: Mesonychia) from Subeng, Nei Mongol: further evidence of “east of Eden” dispersal at the Paleocene-Eocene boundary. Vertebr PalAsiatica 48:375–389Google Scholar
  6. BiochroM’97 (1997) Synthèses et corrélations. In: Aguilar J-P, Legendre S, Michaux J (eds) Actes du colloque international de biostratigraphie BiochroM’97. Mémoires et Travaux de l’EPHE 21. Montpellier: Ecole Pratique des Hautes Etudes, Institut de Montpellier, pp 769–805.Google Scholar
  7. Boule M (1903) Le Pachyaena de Vaugirard. Mém Soc Géol France 28:5–16Google Scholar
  8. Brikiatis L (2014) The de Geer, Thulean and Beringia routes: key concepts for understanding early Cenozoic biogeography. J Biogeogr 41:1036–1054Google Scholar
  9. Chester SG, Bloch JI, Secord R, Boyer DM (2010) A new small-bodied species of Palaeonictis (Creodonta, Oxyaenidae) from the Paleocene-Eocene thermal maximum. J Mammal Evol 17:227–243Google Scholar
  10. Chow M, Chang Y, Wang B, Ting S (1973) New mammalian genera and species from the Paleocene of Nanhsiung, N. Kwangtung. Vertebr PalAsiatica 11:31–35Google Scholar
  11. Chow M, Qi T (1978) Paleocene mammalian fossils from Nomogen formation of Inner Mongolia. Vertebr PalAsiatica 16:77–85Google Scholar
  12. Clyde WC (1997) Stratigraphy and mammalian paleontology of the McCullough Peaks, northern Big Horn Basin, Wyoming: implications for biochronology, basin development, and community reorganization across the Paleocene-Eocene boundary. Dissertation. University of Michigan, Ann ArborGoogle Scholar
  13. Cojan I, Moreau M-G, Stott LE (2000) Stable carbon isotope stratigraphy of the Paleogene pedogenic series of southern France as a basis for continental-marine correlation. Geology 28:259–262Google Scholar
  14. Cope ED (1872) Notices of new Vertebrata from the upper waters of Bitter Creek, Wyoming territory. Proc Am Phil Soc 12:483–486Google Scholar
  15. Cope ED (1874) Report upon vertebrate fossils discovered in New Mexico, with descriptions of new species. Annual Report of the Chief of Engineers, 1874, Appendix FF:588–606Google Scholar
  16. Cope ED (1875) On the supposed Carnivora of the Eocene of the Rocky Mountains. Proc Acad Nat Sci Philadelphia 27:444–448Google Scholar
  17. Cope ED (1881a) A new type of Perissodactyla. Am Nat 15:1017–1018.Google Scholar
  18. Cope ED (1881b) Notes on Creodonta. Am Nat 15: 1018–1020.Google Scholar
  19. Crompton AW (1971) The origin of the tribosphenic molar. In: Kermack DM, Kermack KA (eds) Early Mammals. Zool J Linn Soc 50, supplement 1, London, pp 65–87Google Scholar
  20. Crompton AW, Kielan-Jaworowska Z (1978) Molar structure and occlusion in Cretaceous therian mammals. In: Butler PM, Joysey KA (eds) Studies in the Development, Function and Evolution of Teeth. Academic Press, London, pp 249–287Google Scholar
  21. Crusafont Pairó M, Golpe-Posse JM (1968) Dissacus progressus, nova sp., el primer creodonto de Espańa. Boletin del Instituto Geologico y Minero de España, Madrid 79:354–357Google Scholar
  22. Crusafont Pairó M, Golpe-Posse JM (1973) Yacimientos del Eoceno prepirenaico (nuevas localidades del Cuisiense). Acta geológica hispánica 8:145–147Google Scholar
  23. D’Ambrosia AR, Clyde WC, Fricke HC, Gingerich PD (2014) Repetitive mammalian dwarfism associated with early Eocene carbon cycle perturbations. Rendiconti Online Societa Geologica Italiana 31:52–53Google Scholar
  24. Danilo L, Remy JA, Vianey-Liaud M, Marandat B, Sudre J, Lihoreau F (2013) A new Eocene locality in southern France sheds light on the basal radiation of Palaeotheriidae (Mammalia, Perissodactyla, Equoidea). J Vertebr Paleontol 33:195–215Google Scholar
  25. Dashzeveg D (1976) New mesonychids (Condylarthra, Mesonychidae) from the Paleogene of Mongolia. Sovmestnaâ Soviet-Mongolian Paleontologičeskaâ Ekspediciâ (Trudy) 3:14–31Google Scholar
  26. De Bast E, Smith T (2014) Intercontinental dispersal of mammals during the Paleocene: new data from Europe. J Vertebr Paleontol, Program and Abstracts, 2014:118Google Scholar
  27. De Bast E, Smith T (2016) The oldest Cenozoic reference mammal fauna of Europe: implication of the early Palaeocene Hainin fauna (Belgium) in mammalian evolution and dispersals during the Palaeocene. J Syst Palaeontol 1–45. doi: 10.1080/14772019.2016.1237582
  28. De Bast E, Steurbaut E, Smith T (2013) New mammals from the marine Selandian of Maret, Belgium, and their implications for the age of the Paleocene continental deposits of Walbeck, Germany. Geol Belgica 16:236–244Google Scholar
  29. Depéret C (1910) Etudes sur la famille des Lophiodontidés. Bull Soc Géol France 10:558–577Google Scholar
  30. Eberle JJ, Greenwood DR (2012) Life at the top of the greenhouse Eocene world-a review of the Eocene flora and vertebrate fauna from Canada’s high Arctic. Geol Soc Am Bull 124:3–23Google Scholar
  31. Eberle JJ, McKenna MC (2002) Early Eocene Leptictida, Pantolesta, Creodonta, Carnivora, and Mesonychidae (Mammalia) from the Eureka Sound group, Ellesmere Island, Nunavut. Canadian J Earth Sci 39:899–910Google Scholar
  32. Escarguel G (1999) Les rongeurs de l’Eocène inférieur et moyen d’Europe Occidentale. Systématique, phylogénie, biochronologie et paléobiogéographie des niveaux-repères MP 7 à MP 14. Palaeovertebrata 28:89–351Google Scholar
  33. Estravís C (2000) Nuevos mamíferos del Eoceno Inferior de Silveirinha (Baixo Mondego, Portugal). Coloquios de Paleontología 51:281–312Google Scholar
  34. Franzen JL (2005) The implications of the numerical dating of the Messel fossil deposit (Eocene, Germany) for mammalian biochronology. Ann Paléontol 91:329–335Google Scholar
  35. Geisler JH (2001) New morphological evidence for the phylogeny of Artiodactyla, Cetacea, and Mesonychidae. Am Mus Novitates 3344:1–53Google Scholar
  36. Geisler JH, McKenna MC (2007) A new species of mesonychian mammal from the lower Eocene of Mongolia and its phylogenetic relationships. Acta Palaeontol Polonica 52:189–212Google Scholar
  37. Gheerbrant E, Codrea V, Hosu A Sen S, Guernet C, De Lapparent de Broin F, Riveline J (1999) Découverte de vertébrés dans les Calcaires de Rona (Thanétien ou Sparnacien), Transylvanie, Roumanie: les plus anciens mammiferes cénozoiques d’Europe Orientale. Eclogae geol Helvetiae 92:517–535Google Scholar
  38. Gingerich PD (1973) First record of the Paleocene primate Chiromyoides in North America. Nature 244:517–518PubMedGoogle Scholar
  39. Gingerich PD (1989) New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. Univ Michigan Pap Paleontol 28:1–97Google Scholar
  40. Gingerich PD (2003a) Land-to-sea transition in early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology 29:429–454Google Scholar
  41. Gingerich PD (2003b) Mammalian responses to climate change at the Paleocene-Eocene boundary: polecat bench record in the northern Bighorn Basin, Wyoming. Spec Pap-Geol Soc Am 369:463–478Google Scholar
  42. Gingerich PD (2006) Environment and evolution through the Paleocene–Eocene Thermal Maximum. Trends Ecol Evol 21:246–253Google Scholar
  43. Gingerich PD, Haq M, Zalmout IS, Khan IH, Malkani MS (2001) Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science 293:2239–2242Google Scholar
  44. Gingerich PD, Smith T (2006) Paleocene-Eocene land mammals from three new latest Clarkforkian and earliest Wasatchian wash sites at polecat bench in the northern Bighorn Basin, Wyoming. Contrib Mus Paleontol Univ Michigan 31:245–303Google Scholar
  45. Gingerich PD, Wells NA, Russell DE, Shah SMI (1983) Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403–406.PubMedGoogle Scholar
  46. Godinot M (1981) Les Mammifères de Rians (Eocène inférieur, Provence). Palaeovertebrata 10:43–126Google Scholar
  47. Godinot M, Crochet JY, Hartenberger JL, Lange-Badré B, Russell DE, Sigé B (1987) Nouvelles données sur les mammifères de Palette (Eocène inférieur, Provence). Münchner Geowissenschaftliche Abhandlungen A 10:273–288Google Scholar
  48. Godinot M, Galoyer A, Russell D, Smith T, Thiery M (1998) Mammal bearing conglomerate. Meudon section. In: Thiry M, Dupuis C (eds) The Palaeocene/Eocene Boundary in Paris Basin: the Sparnacian Deposits, Field Trip Guide. Ecole des Mines de Paris, Mémoires des Sciences de la terre 34, Paris, pp 79–84Google Scholar
  49. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786Google Scholar
  50. Gunnell GF, Gingerich PD (1991) Systematics and evolution of late Paleocene and early Eocene Oxyaenidae (Mammalia, Creodonta) in the Clark’s Fork Basin, Wyoming. Contrib Mus Paleontol Univ Michigan 28:141–180Google Scholar
  51. Gunnell GF, Gingerich PD (1996) New hapalodectid Hapalorestes lovei (Mammalia, Mesonychia) from the early middle Eocene of northwestern Wyoming. Contrib Mus Paleontol Univ Michigan 29:413–418Google Scholar
  52. Heinrich RE, Strait SG, Houde P (2008) Earliest Eocene Miacidae (Mammalia: Carnivora) from northwestern Wyoming. J Paleontol 82:154–162Google Scholar
  53. Hooker JJ (1996) Mammalian biostratigraphy across the Paleocene-Eocene boundary in the Paris, London and Belgian basins. Geol Soc Lond Spec Publ 101:205–218Google Scholar
  54. Hooker JJ (1998) Mammalian faunal change across the Paleocene-Eocene transition in Europe. In: Aubry M-P, Lucas SG, Berggren WA (eds) Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Columbia University Press, New York, pp 428–450Google Scholar
  55. Hooker JJ (2010) The mammal fauna of the early Eocene Blackheath formation of Abbey Wood, London. Monogr Palaeontogr Soc Lond 165:1–162Google Scholar
  56. Hooker JJ (2015) A two-phase mammalian dispersal event across the Paleocene–Eocene transition. Newsletters on Stratigraphy 48:201–220Google Scholar
  57. Hooker JJ, Millbank C (2001) A cernaysian mammal from the Upnor formation (late Palaeocene, Herne Bay, UK) and its implications for correlation. Proc Geol Assoc 112:331–338Google Scholar
  58. Hooker JJ, Russell DE (2012) Early Palaeogene Louisinidae (Macroscelidea, Mammalia), their relationships and north European diversity. Zool J Linn Soc 164:856–936Google Scholar
  59. Ideker J, Yan D (1980) Lestes (Mammalia) a junior homonym of Lestes (Zygoptera). Vertebr PalAsiatica 18:138–141Google Scholar
  60. Jin X (2005) Mesonychids from Lushi Basin, Henan Province, China. Vertebr PalAsiatica 43:151–164Google Scholar
  61. Jin X (2012) New mesonychid (Mammalia) material from the lower Paleogene of the Erlian Basin, Nei Mongol, China. Vertebr PalAsiatica 50:245–257Google Scholar
  62. Lange-Badré B (1979) Les Créodontes (Mammalia) d’Europe occidentale de l’Eocène supérieur à l’Oligocène supérieur. Mém Mus Natl Hist Nat 42:1–249Google Scholar
  63. Lange-Badré B, Haubold H (1990) Les créodontes (mammifères) du gisement de Geiseltal (Éocène moyen, RDA). Geobios 23:607–637Google Scholar
  64. Laurent Y, Adnet S, Bourdon E, Corbalan D, Danilo L, Duffaud S, Fleury G, Garcia G, Godinot M, Le Roux G., Maisonnave C, Métais G, Mourer-Chauviré C, Presseq B, Sigé B, Solé F (2010) La Borie (Saint-Papoul, Aude): un gisement exceptionnel dans l’Éocène basal du Sud de la France. Bull Soc hist nat Toulouse 146:89–103Google Scholar
  65. Lemoine V (1885) Etudes sur quelques Mammifères fossiles de l’Eocène inférieur des environs de Reims. Bull Soc Géol France Sér 3 13: 203–217Google Scholar
  66. Lemoine V (1891) Étude d’ensemble sur les dents des mammifères fossiles des environs de Reims. Bull Soc Géol France Sér 3 19:263–290Google Scholar
  67. Lenz OK, Wilde V, Mertz DF, Riegel W (2015) New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany). Internatl J Earth Sci 104:873–889Google Scholar
  68. Lopatin AV (2001) The earliest Hapalodectes (Mesonychia, Mammalia) from the Paleocene of Mongolia. Paleontol J 35:426–432Google Scholar
  69. López-Martínez N, Peláez-Campomanes P (1999) New mammals from south-central Pyrenées (Tremp formation, Spain) and their bearing on late Paleocene marine-continental correlations. Bull Soc Géol France 170:681–696Google Scholar
  70. López-Martínez N, Smith R, Peláez-Campomanes P, Smith T (2006) The acme of the micromammal Paschatherium across the Paleocene-Eocene boundary in continental Europe. Micropaleontology 52:267–280Google Scholar
  71. Louis P (1970) Note préliminaire sur un gisement de mammifères de l’Eocène inférieur situé Route de Broyes à Sézanne (Marne). Annales de l’Université et de l’A.R.E.R.S. de Reims 8:48–62Google Scholar
  72. Louis P, Laurain M (1983) Nouveau gisement de vertébrés dans le Cuisien supérieur de Saint-Agnan (Aisne). Ses relations stratigraphiques avec les autres gisements yprésiens du Bassin parisien. Bulletin d’Information des Géologues du Bassin de Paris 20:3–20Google Scholar
  73. Lucas SG (1998) Fossil mammals and the Paleocene/Eocene series boundary in Europe, North America, and Asia. In: Aubry M-P, Lucas SG, Berggren WA (eds) Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Columbia University Press, New York, pp 451–500Google Scholar
  74. Magioncalda R, Dupuis C, Smith T, Steurbaut E, Gingerich PD (2004) Paleocene-Eocene carbon isotope excursion in organic carbon and pedogenic carbonate: direct comparison in a continental stratigraphic section. Geology 32:553–556Google Scholar
  75. Marandat B (1997) La disparité des faunes mammaliennes du niveau MP 7 (Eocene inférieur) des domaines péri-mésogéens et nordiques. Investigation d’un provincialisme intra-européen. Newsletters on Stratigraphy 35:63–82Google Scholar
  76. Marandat B, Adnet S, Marivaux L, Martinez A, Vianey-Liaud M, Tabuce R (2012) A new mammalian fauna from the earliest Eocene (Ilerdian) of the Corbières (southern France): palaeobiogeographical implications. Swiss J Geosci 105:417–434Google Scholar
  77. Matthew WD (1897) A revision of the Puerco fauna. Bull Am Mus Nat Hist 9:259–323Google Scholar
  78. Matthew WD (1937) Paleocene faunas of the San Juan Basin, New Mexico. Trans Am Phil Soc 30:1–510Google Scholar
  79. Matthew WD, Granger W (1915) A revision of the lower Eocene Wasatch and Wind River faunas. Part 1. Order Ferae (Carnivora), suborder Creodonta. Bull Am Mus Nat Hist 34:1–103Google Scholar
  80. Matthew WD, Granger W (1925) New mammals from the Irdin Manha Eocene of Mongolia. Am Mus Novitates 198:1–10Google Scholar
  81. Meng J, Zhai R-J, Wyss AR (1998) The late Paleocene Bayan Ulan fauna of Inner Mongolia, China. Bull Carnegie Mus Nat Hist 34:148–185Google Scholar
  82. Missiaen P (2011) An updated mammalian biochronology and biogeography for the early Paleogene of Asia. Vertebr PalAsiatica 49:29–52Google Scholar
  83. Missiaen P, Quesnel F, Dupuis C, Storme J-Y, Smith T (2013) The earliest Eocene mammal fauna of the Erquelinnes sand member near the French-Belgian border. Geol Belgica 16:262–273Google Scholar
  84. Missiaen P, Smith T (2008) The Gashatan (late Paleocene) mammal fauna from Subeng, Inner Mongolia, China. Acta Palaeontol Polonica 53:357–378Google Scholar
  85. Morlo M (1999) Niche structure and evolution in creodont (Mammalia) faunas of the European and North American Eocene. Geobios 32:297–305Google Scholar
  86. Nel A, de Plöeg G, Dejax J, Dutheil D, de Franceschi D, Gheerbrant E, Godinot M, Hervet S, Menier J-J, Augé M, Bignot G, Cavagnetto C, Duffaud S, Gaudant J, Hua S, Jpssang A, De Lapparent de Broin F, Pozzi J-P, Paichler J-C, Beuchet F, Rage J-C (1999) Un gisement sparnacien exceptionnel à plantes, arthropodes et vertébrés (Éocène basal, MP7): Le Quesnoy (Oise, France). Comptes Rendus de l’Académie des Sciences, Series IIA Earth and Planetary Science 329:65–72Google Scholar
  87. Nixon KC (1999) Winclada (BETA) v. 0.9.9. Published by the author, IthacaGoogle Scholar
  88. O’Leary MA (1998) Phylogenetic and morphometric reassessment of the dental evidence for a mesonychian and cetacean clade. In: Thewissen JGM (ed) The Emergence of Whales. Plenum Press, New York and London, pp 133–161Google Scholar
  89. O’Leary MA, Lucas SG, Williamson TE (2000) A new specimen of Ankalagon (Mammalia, Mesonychia) and evidence of sexual dimorphism in mesonychians. J Vertebr Paleontol 20:387–393Google Scholar
  90. O’Leary MA, Rose KD (1995) New mesonychian dentitions from the Paleocene and Eocene of the Bighorn Basin, Wyoming. Ann Carnegie Mus 64:147–172Google Scholar
  91. Osborn HF (1910) The Age of Mammals in Europe, Asia, and North America. Macmillan Company, New York, 635 ppGoogle Scholar
  92. Osborn HF, Wortman L (1892) Fossil mammals of the Wasatch and Wind River beds. Collection of 1891. Bull Am Mus Nat Hist 4:80–147Google Scholar
  93. Polly PD (1997) Ancestry and species definition in paleontology: a stratocladistic analysis of Paleocene-Eocene Viverravidae (Mammalia, Carnivora) from Wyoming. Contrib Mus Paleontol Univ Michigan 30:1–53Google Scholar
  94. Quinet GE (1964) Morphologie dentaire des mammifères éocènes de Dormaal. Bulletin du groupement international de recherche en stomatologie 7:272–294Google Scholar
  95. Robinet C, Remy JA, Laurent Y, Danilo L, Lihoreau F (2015) A new genus of Lophiodontidae (Perissodactyla, Mammalia) from the early Eocene of La Borie (southern France) and the origin of the genus Lophiodon Cuvier, 1822. Geobios 48:25–38Google Scholar
  96. Rose KD (1981) The Clarkforkian land-mammal age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ Michigan Pap Paleontol 26:1–197Google Scholar
  97. Rose KD (2006) The Beginning of the Age of Mammals. John Hopkins University Press, BaltimoreGoogle Scholar
  98. Rose KD, Chew AE, Dunn RH, Kraus MJ, Fricke HC, Zack SP (2012) Earliest Eocene mammalian fauna from the Paleocene-Eocene thermal maximum at Sand Creek divide, southern Bighorn Basin, Wyoming. Univ Michigan Pap Paleontol 36:1–122Google Scholar
  99. Russell DE (1964) Les mammifères paléocènes d’Europe. Mém Mus Natl Hist Nat 13:1–324Google Scholar
  100. Russell DE, Bignot G, Galoyer A, Guernet C, Pomerol C, Riveline J, Sen S, Thiry M, Tourenq J (1993) De la Craie à l’Argile plastique: un affleurement remarkable à Meudon près de Paris. Bulletin d’Information des Géologues du Bassin de Paris 30:3–9Google Scholar
  101. Russell DE, de Broin F, Galoyer A, Gaudant J, Gingerich PD, Rage JC (1990) Les vertébrés du Sparnacien de Meudon. Bulletin d’Information des Géologues du Bassin de Paris 27:21–31Google Scholar
  102. Russell DE, Galoyer A, Louis P, Gingerich PD (1988) Nouveaux vertébrés sparnaciens du Conglomérat de Meudon à Meudon, France. Comptes Rendus de l’Académie des Sciences, Paris série II 307:429–433Google Scholar
  103. Russell DE, Hartenberger JL, Pomerol C, Sen S, Schmidt-Kittler N, Vianey-Liaud M (1982) Mammals and stratigraphy: the Paleogene of Europe. Palaeovertebrata, Mém Extraordinaire:1–77Google Scholar
  104. Savage DE, Russell DE, Louis P (1966) Ceratomorpha and Ancylopoda (Perissodactyla) from the lower Eocene Paris Basin, France. Univ California Publ Geol Sci 66:1–38Google Scholar
  105. Secord R (2008) The Tiffanian land-mammal age (middle and late Paleocene) in the northern Bighorn Basin, Wyoming. Univ Michigan Pap Paleontol 35:1–192Google Scholar
  106. Secord R, Bloch JI, Chester SG, Boyer DM, Wood AR, Wing SL, Kraus MJ, McInerney FA, Krigbaum J (2012) Evolution of the earliest horses driven by climate change in the Paleocene-Eocene thermal maximum. Science 335:959–962PubMedGoogle Scholar
  107. Smith R, Hooker JJ (1996) Sur la présence de dents de mammifères (Creodonta, Perissodactyla) près de la limite Paléocène-Eocène à Hoegaarden, Belgique. Palaeovertebrata 25:115–124Google Scholar
  108. Smith T (2000) Mammals from the Paleocene-Eocene transition in Belgium (Tienen formation, MP7): palaeobiogeographical and biostratigraphical implications. GFF 122:148–149Google Scholar
  109. Smith T, Dupuis C, Folie A, Quesnel F, Storme J-Y, Iacumin P, Riveline J, Missiaen P, Ladevèze S, Yans J (2011) A new terrestrial vertebrate site just after the Paleocene–Eocene boundary in the Mortemer Formation of upper Normandy, France. Comptes Rendus Palevol 10:11–20Google Scholar
  110. Smith T, Quesnel F, de Plöeg G, de Franceschi D, Metais G, De Bast E, Solé F, Folie A, Boura A, Claude J, Dupuis C, Gagnaison C, Iakovleva A, Martin J, Maubert F, Prieur J, Roche E, Storme J-Y, Thomas R, Tong H, Yans J, Buffetaut E (2014) First Clarkforkian equivalent land mammal age in the latest Paleocene basal Sparnacian facies of Europe: fauna, flora, paleoenvironment and (bio) stratigraphy. PLoS One 9, e86229. doi: 10.1371/journal.pone.0086229
  111. Smith T, Rose KD, Gingerich PD (2006) Rapid Asia–Europe–North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene–Eocene Thermal Maximum. Proc Natl Acad Sci USA 103:11223–11227Google Scholar
  112. Smith T, Smith R (2001) The creodonts (Mammalia, Ferae) from the Paleocene-Eocene transition in Belgium (Tienen Formation, MP7). Belgian J Zool 131:117–136Google Scholar
  113. Smith T, Smith R (2010) A new genus of “miacid” carnivoran from the earliest Eocene of Europe and North America. Acta Palaeontol Polonica 55:761–764Google Scholar
  114. Smith T, Smith R (2013) A land micro-mammal fauna from the early Eocene marine Egem deposits (NP12, Belgium) and the first occurrence of the peradectid marsupial Armintodelphys outside North America. Geol Belgica 16:302–310Google Scholar
  115. Solé F (2013) New proviverrine genus from the early Eocene of Europe and the first phylogeny of late Paleocene-middle Eocene hyaenodontidans (Mammalia). J Syst Paleontol 11:375–398Google Scholar
  116. Solé F (2014) New carnivoraforms from the early Eocene of Europe and their bearing on the evolution of the Carnivoraformes. Palaeontology 57:963–978Google Scholar
  117. Solé F, Falconnet J, Vidalenc D (2015) New fossil Hyaenodonta (Mammalia, Placentalia) from the Ypresian and Lutetian of France and the evolution of the Proviverrinae in southern Europe. Palaeontology 58:1049–1072Google Scholar
  118. Solé F, Falconnet J, Yves L (2014a) New proviverrines (Hyaenodontida) from the early Eocene of Europe; phylogeny and ecological evolution of the Proviverrinae. Zool J Linn Soc 171:878–917Google Scholar
  119. Solé F, Gheerbrant E, Godinot M (2011) New data on the Oxyaenidae from the early Eocene of Europe; biostratigraphic, paleobiogeographic and paleoecologic implications. Palaeontologia Electronica 14: 1–41. available at http://palaeoelectronica.org/2011_2/258/index.html Google Scholar
  120. Solé F, Gheerbrant E, Godinot M (2013a) Sinopaninae and Arfianinae (Hyaenodontida, Mammalia) from the early Eocene of Europe and Asia; evidence for dispersal in Laurasia around the Paleocene/Eocene boundary and for an unnoticed faunal turnover in Europe. Geobios 46:313–327Google Scholar
  121. Solé F, Gheerbrant E, Godinot M (2013b) The “miacids” (Carnivoraformes Mammalia) from early Eocene locality of Le Quesnoy (MP7, France); first occurrence of Vassacyon in Europe. Comptes rendus Palevol 12:191–202Google Scholar
  122. Solé F, Smith R, Coillot T, De Bast E, Smith T (2014b) Dental and tarsal anatomy of “Miacislatouri and a phylogenetic analysis of the earliest carnivoraforms (Mammalia, Carnivoramorpha). J Vertebr Paleontol 34:1–21Google Scholar
  123. Solé F, Smith T, De Bast E, Codrea V, Gheerbrant E (2016) New carnivoraforms from the latest Paleocene of Europe and their bearing on the origin and radiation of Carnivoraformes (Carnivoramorpha, Mammalia). J Vertebr Paleontol 36: 1–19, e1082480Google Scholar
  124. Spaulding M, O’Leary MA, Gatesy J (2009) Relationships of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PLoS One 4: e7062. doi: 10.1371/journal.pone.0007062 PubMedPubMedCentralGoogle Scholar
  125. Springhorn R (1980) Paroodectes feisti, der erste Miacide (Carnivora, Mammalia) aus dem Mittel-Eozän von Messel. Paläontol Z 54 :171–198Google Scholar
  126. Springhorn R (2000) Messelogale, eine neue Raubtiergattung aus dem Mitteleozän von Messel (Deutschland). Paläontol Z 74:425–439Google Scholar
  127. Stehlin HG (1926) Une espèce lutétienne de Dissacus. Bull Soc Géol France Sér 4 26:185–189Google Scholar
  128. Steurbaut E, Magioncalda R, Dupuis C, Van Simaeys S, Roche E, Roche M (2003) Palynology, paleoenvironments, and organic carbon isotope evolution in lagoonal Paleocene-Eocene boundary settings in North Belgium. Spec Pap Geol Soc Am 369:291–318Google Scholar
  129. Sudre J, Erfurt J (1996) Les artiodactyles du gisement yprésien terminal de Prémontré (Aisne, France). Palaeovertebrata 25:391–414Google Scholar
  130. Szalay FS (1969a) The Hapalodectinae and a phylogeny of the Mesonychidae (Mammalia, Condylarthra). Am Mus Novitates 2361:1–26Google Scholar
  131. Szalay FS (1969b) Origin and evolution of function of the mesonychid condylarth feeding mechanism. Evolution 23:703–720PubMedGoogle Scholar
  132. Szalay FS, Gould SJ (1966) Asiatic Mesonychidae (Mammalia, Condylarthra). Bull Am Mus Nat Hist 132:128–173Google Scholar
  133. Teilhard de Chardin P (1922) Les mammifères de l’Eocène inférieur français et leurs gisements. Ann Paléontol 11:1–108Google Scholar
  134. Teilhard de Chardin P (1927) Les Mammifères de 1’Eocène inférieur de la Belgique. Mém Mus roy Hist nat Belgique 36:1–33Google Scholar
  135. Thewissen JGM (1994) Phylogenetic aspects of cetacean origins: a morphological perspective. J Mammal Evol 2:157–184Google Scholar
  136. Thewissen JGM, Cooper LN, Clementz MT, Bajpai S, Tiwari BN (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:1190–1194Google Scholar
  137. Thewissen JGM, Hussain ST, Arif M (1994) Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210–212PubMedGoogle Scholar
  138. Thewissen JGM, Williams EM, Roe LJ, Hussain ST (2001) Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature 413:277–281PubMedGoogle Scholar
  139. Ting S, Li CK (1987) The skull of Hapalodectes (Acreodi, Mammalia), with notes on some Chinese Paleocene mesonychids. Vertebr PalAsiatica 25:161–186.Google Scholar
  140. Ting S, Wang Y, Schiebout JA, Koch PL, Clyde WC, Bowen GJ, Wang Y (2004) New early Eocene mammalian fossils from the Hengyang Basin, Hunan China. Bull Carnegie Mus Nat Hist 36:291–301Google Scholar
  141. Tong Y, Wang J (2006) Fossil mammals from the early Eocene Wutu Formation of Shandong Province. Palaeontol Sinica new ser C 192:1–195Google Scholar
  142. Van Valen LM (1966) Deltatheridia, a new order of mammals. Bull Am Mus Nat Hist 132:1–126Google Scholar
  143. Van Valen LM (1969) The multiple origins of the placental carnivores. Evolution 23:118–130Google Scholar
  144. Van Valen LM (1978) The beginning of the age of mammals. Evol Theory 4:45–80Google Scholar
  145. Van Valkenburgh B (1990) Skeletal and dental predictors of body mass in carnivores. In: Damuth J, MacFadden BJ (eds) Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, Cambridge, pp 181–205Google Scholar
  146. Vandenberghe N, Hilgen FJ, Speijer RP (2012) The Paleogene period. In: The Geologic Time Scale 2012. Elsevier Publ. Co., Amsterdam, pp 855–921Google Scholar
  147. Wang B (1975) Paleocene mammals of Chaling Basin, Hunan. Vertebr PalAsiatica 13:154–162Google Scholar
  148. Williamson TE (1996) The beginning of the age of mammals in the San Juan Basin, New Mexico: biostratigraphy and evolution of Paleocene mammals of the Nacimiento formation. New Mexico Mus Nat Hist Sci Bull 8:1–141Google Scholar
  149. Williamson TE, Carr TD (2007) Revision of the problematic early Paleocene genus Oxyclaenus (Mammalia: Oxyclaenidae) and a new species of Carcinodon. J Vertebr Paleontol 27:973–986Google Scholar
  150. Woodburne MO, Gunnell GF, Stucky RK (2009) Land mammal faunas of North America rise and fall during the early Eocene climatic optimum. Denver Mus Nat Sci Ann 1:1–74Google Scholar
  151. Wortman JL (1901) Studies of Eocene Mammalia in the Marsh Collection, Peabody Museum. Part 1. Carnivora. Am J Sci 11:1–145.Google Scholar
  152. Yan D, Tang Y (1976) Mesonychids from the Paleocene of Anhui. Vertebr PalAsiatica 14:252–285Google Scholar
  153. Yans J, Marandat B, Masure E, Serra-Kiel J, Schnyder J, Storme J-Y, Marivaux L, Adnet S, Vianey-Liaud M, Tabuce R (2014) Refined bio-(benthic foraminifera, dinoflagellate cysts) and chemostratigraphy (δ13Corg) of the earliest Eocene at albas-Le clot (Corbières, France): implications for mammalian biochronology in southern Europe. Newsletters on Stratigraphy 47:331–353Google Scholar
  154. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283PubMedGoogle Scholar
  155. Zhou X (1995) Evolution of Paleocene-Eocene Mesonychidae (Mammalia, Mesonychia). Dissertation. University of Michigan, Ann ArborGoogle Scholar
  156. Zhou X, Gingerich PD (1991) New species of Hapalodectes (Mammalia, Mesonychia) from the early Wasatchian, early Eocene, of northwestern Wyoming. Contrib Mus Paleontol Univ Michigan 28:215–220Google Scholar
  157. Zhou X, Sanders WJ, Gingerich PD (1992) Functional and behavioral implications of vertebral structure in Pachyaena ossifraga (Mammalia, Mesonychia). Contrib Mus Paleontol Univ Michigan 28:289–319.Google Scholar
  158. Zhou X, Zhai R, Gingerich PD, Chen L (1995) Skull of a new mesonychid (Mammalia, Mesonychia) from the late Paleocene of China. J Vertebr Paleontol 15:387–400Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Floréal Solé
    • 1
  • Marc Godinot
    • 2
  • Yves Laurent
    • 3
    • 4
  • Alain Galoyer
    • 5
  • Thierry Smith
    • 1
  1. 1.Directorate Earth and History of Life, Palaeobiosphere EvolutionRoyal Belgian Institute of Natural SciencesBrusselsBelgium
  2. 2.Muséum National d’Histoire Naturelle, Département Histoire de la TerreEcole Pratique des Hautes Etudes (EPHE) - Sorbonne Universités - CR2P (CNRS, MNHN, UPMC-Paris 06)ParisFrance
  3. 3.Muséum d’Histoire Naturelle de ToulouseToulouseFrance
  4. 4.Association Paléontologique du Sud-Ouest (APSO)Roquefort-sur-GaronneFrance
  5. 5.MeudonFrance

Personalised recommendations