Skip to main content

Advertisement

Log in

New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The annually laminated oil shale from the Eocene maar lake at Messel (Federal State of Hessen, Germany) provides unique paleoenvironmental data for a time interval of ~640 ka during the Paleogene greenhouse phase. As a consequence of orbitally controlled changes in the vegetation in the vicinity of the lake, the lacustrine laminites can now be astronomically tuned. Dating is based on the short eccentricity amplitude modulations of the regional pollen rain and their correlation to the astronomical La2010a/La2010d solutions in combination with a revised 40Ar/39Ar age of a basalt fragment from a lapilli tuff section below the first lacustrine sediments. Depending on different newly suggested ages for the Fish Canyon sanidine used as monitor for neutron irradiation, the age for the eruption at Messel is between 48.27 ± 0.22 and 48.11 ± 0.22 Ma. This allows for the first time the exact correlation of a Paleogene lacustrine sequence to the marine record in Central Europe. The Messel oil shale becomes now slightly older than previously assumed and includes the Ypresian/Lutetian boundary that moves the base of the European Land Mammal Age Geiseltalian (MP 11) into the Lower Eocene. This opens a window for establishing an independent chronostratigraphic framework for Paleogene terrestrial records and their correlation to the marine realm. Furthermore, the study reveals that higher amounts of pollen from “wet” and thermophilous plants indicate less seasonal and more balanced precipitation and slightly higher temperatures during a well-expressed eccentricity minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bains S, Norris RD, Corfield RM, Faul KL (2000) Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407:171–174

    Article  Google Scholar 

  • Barke J, Abels HA, Sangiorgi F, Greenwood DR, Sweet AR, Donders T, Reichart GJ, Lotter AF, Brinkhuis H (2011) Orbitally forced Azolla blooms and Middle Eocene Arctic hydrology: clues from palynology. Geology 39:427–430

    Article  Google Scholar 

  • Barrett PJ (1996) Antarctic paleoenvironment through Cenozoic times—a review. Terra Ant 3:103–119

    Google Scholar 

  • Bijl P, Houben AJP, Schouten S, Bohaty SM, Sluijs A, Reichart G-J, Sinninghe-Damsté JS, Brinkhuijs H (2010) Transient Middle Eocene atmospheric CO2 and temperature variations. Science 330:819–821. doi:10.1126/science.1193654

    Article  Google Scholar 

  • Bohaty SM, Zachos JC (2003) Significant Southern Ocean warming event in the late middle Eocene. Geology 31:1017–1020. doi:10.1130/G19800.1

    Article  Google Scholar 

  • Channell JET, Hodell DA, Singer BS, Xuan C (2010) Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama-Brunhes boundary and late Matuyama Chron. Geochem Geophy Geosy 11:Q0AA12. doi:10.1029/2010GC003203

    Article  Google Scholar 

  • Clemens SC (1999) An astronomical tuning strategy for Pliocene sections: implications for global-scale correlation and phase relationships. Phil Trans R Soc Lond A 357:1949–1973. doi:10.1098/rsta.1999.0409

    Article  Google Scholar 

  • Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS international chronostratigraphic chart. Episodes 36:199–204

    Google Scholar 

  • Collinson ME (2002) The ecology of Cainozoic ferns. Rev Palaeobot Palyno 119:51–68

    Article  Google Scholar 

  • Collinson ME, Hooker JJ, Gröcke DR (2003) Cobham lignite bed and penecontemporaneous macrofloras of southern England: a record of vegetation and fire across Palaeocene-Eocene Thermal Maximum. Geol Soc Am Spec Pap 369:333–349

    Google Scholar 

  • Collinson ME, Steart DC, Harrington GJ, Hooker JJ, Scott AC, Allen LO, Glasspool IJ, Gibbons SJ (2009) Palynological evidence of vegetation dynamics in response to palaeoenvironmental change across the onset of the Paleocene-Eocene Thermal Maximum at Cobham, Southern England. Grana 48:38–66

    Article  Google Scholar 

  • Derer CE, Schumacher ME, Schäfer A (2005) The northern Upper Rhine Graben: basin geometry and early syn-rift tectono-sedimentary evolution. Int J Earth Sci (Geol Rundsch) 94:640–656

    Article  Google Scholar 

  • Edgar KM, Wilson PA, Sexton PF, Gibbs SJ, Roberts AP, Norris RD (2010) New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes. Palaeogeogr Palaeoclimatol 297:670–682. doi:10.1016/j.palaeo.2010.09.016

    Article  Google Scholar 

  • El Bay R, Jacoby W, Wallner H (2001) Milankovitch signals in Messel “Oilshales”. Kaupia 11:69–72

    Google Scholar 

  • Felder M, Harms FJ (2004) Lithologie und genetische Interpretation der vulkano-sedimentären Ablagerungen aus der Grube Messel anhand der Forschungsbohrung Messel 2001 und weiterer Bohrungen (Eozän, Messel-Formation, Sprendlinger Horst, Südhessen). Cour For Senckenbg 252:151–203

    Google Scholar 

  • Felder M, Harms FJ, Liebig V (2001) Lithologische Beschreibung der Forschungsbohrungen Groß-Zimmern, Prinz von Hessen und Offenthal sowie zweier Lagerstättenbohrungen bei Eppertshausen (Sprendlinger Horst, Eozän, Messel-Formation, Süd-Hessen). Geol Jb Hessen 128:29–82

    Google Scholar 

  • Fienga A, Manche H, Laskar J, Gastineau M (2008) INPOP06: a new numerical planetary ephemeris. Astron Astrophys 477:315–327. doi:10.1051/0004-6361:20066607

    Article  Google Scholar 

  • Fienga A, Laskar J, Morley T, Manche H, Kuchynka P, Le Poncin-Lafitte C, Budnik F, Gastineau M, Somenzi L (2009) INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astron Astrophys 507:1675–1686. doi:10.1051/0004-6361/200911755

    Article  Google Scholar 

  • Franzen JL (2005) The implications of the numerical dating of the Messel fossil deposit (Eocene, Germany) for mammalian biochronology. Ann Paleontol 91:329–335

    Article  Google Scholar 

  • Goth K (1990) Der Messeler Ölschiefer—ein Algenlaminit. Cour For Senckenbg 131:1–143

    Google Scholar 

  • Grein M, Utescher T, Wilde V, Roth-Nebelsick A (2011) Reconstruction of the middle Eocene climate of Messel using palaeobotanical data. N Jb Geol Paläont Abh 260:305–318

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1). http://www.palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Harms FJ, Aderhold G, Hoffmann I, Nix T, Rosenberg F (1999) Erläuterungen zur Grube Messel bei Darmstadt, Südhessen. Schriftenreihe der Deutschen Geologischen Gesellschaft 8:181–222

    Google Scholar 

  • Harms FJ, Nix T, Felder M (2003) Neue Darstellungen zur Geologie des Ölschiefer-Vorkommens Grube Messel. Nat Mus 133:140–148

    Google Scholar 

  • Harrington GJ (2001) Impact of Paleocene/Eocene greenhouse warming on North American paratropical forests. Palaios 16:266–278

    Article  Google Scholar 

  • Harrington GJ, Jaramillo CA (2007) Paratropical floral extinction in the Late Palaeocene-Early Eocene. J Geol Soc Lond 164:323–332

    Article  Google Scholar 

  • Harrington GJ, Kemp SJ, Koch PL (2004) Palaeocene-Eocene paratropical floral change in North America: responses to climate change and plant immigration. J Geol Soc Lond 161:173–184

    Article  Google Scholar 

  • Harrington GJ, Clechenko ER, Kelly CD (2005) Palynology and organic-carbon isotope ratios across a terrestrial Paleocene/Eocene boundary section in the Williston Basin, North Dakota, USA. Palaeogeogr Palaeoclimatol 226:214–232

    Article  Google Scholar 

  • Hilgen F, Brinkhuis H, Zachariasse WJ (2006) Unit stratotypes for global stages: the Neogene perspective. Earth Sci Rev 74:113–125. doi:10.1016/j.earscirev.2005.09.003

    Google Scholar 

  • Hinsken S, Ustaszewski K, Wetzel A (2007) Graben width controlling syn-rift sedimentation: the Palaeogene southern Upper Rhine Graben as an example. Int J Earth Sci (Geol Rundsch) 96:979–1002

    Article  Google Scholar 

  • Hottenrott M (2002) Age determinations of palynological assemblages from Lower Tertiary of the Eisenberg Basin (Northern Palatinate, Germany). Acta Palaeontol Sinica 41:565–575

    Google Scholar 

  • Huang J, Wang S, Wen X, Yang B (2008) Progress in studies of the climate of humid period and the impacts of changing precession in early-mid Holocene. Prog Nat Sci 18:1459–1464

    Article  Google Scholar 

  • Illies JH (1972) The Rhine Graben rift system—plate tectonics and transform faulting. Geophys Surv 1:27–60

    Article  Google Scholar 

  • Irion G (1977) Der eozäne See von Messel. Natur Museum 107:213–218

    Google Scholar 

  • Jacoby W, Wallner H, Smilde P (2000) Tektonik und Vulkanismus entlang der Messel-Störungszone auf dem Sprendlinger Horst: Geophysikalische Ergebnisse. Z Deut Geol Gesell 151:493–510

    Google Scholar 

  • Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353:225–229

    Article  Google Scholar 

  • Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of Earth history. Science 320:500–504

    Article  Google Scholar 

  • Kwon J, Min K, Bickel PJ, Renne PR (2002) Statistical methods for jointly estimating the decay constant of 40K and the age of dating standards. Math Geol 34:457–474

    Article  Google Scholar 

  • Lanci L, Muttoni G, Erba E (2010) Astronomical tuning of the Cenomanian Scaglia Bianca Formation at Furlo, Italy. Earth Planet Sci Lett 292:231–237. doi:10.1016/j.epsl.2010.01.041

    Article  Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the earth. Astron Astrophys 428:261–285. doi:10.1051/0004-6361:20041335

    Article  Google Scholar 

  • Laskar J, Fienga A, Gastineau M, Manche H (2011) La2010: a new orbital solution for the long-term motion of the Earth. Astron Astrophys 532(A89):1–15. doi:10.1051/0004-6361/201116836

    Google Scholar 

  • Lenz OK (2005) Palynologie und Paläoökologie eines Küstenmoores aus dem Mittleren Eozän Mitteleuropas—Die Wulfersdorfer Flözgruppe aus dem Tagebau Helmstedt. Palaeontogr Abt B 271:1–157

    Google Scholar 

  • Lenz OK, Wilde V, Riegel W (2007) Recolonization of a Middle Eocene volcanic site: quantitative palynology of the initial phase of the maar lake of Messel (Germany). Rev Palaeobot Palynol 145(217):242

    Google Scholar 

  • Lenz OK, Wilde V, Riegel W, Harms FJ (2010) A 600 k.y. record of El Niño-Southern Oscillation (ENSO): evidence for persisting teleconnections during the Middle Eocene greenhouse climate of Central Europe. Geology 38:627–630. doi:10.1130/G30889.1

    Article  Google Scholar 

  • Lenz OK, Wilde V, Riegel W (2011) Short-term fluctuations in vegetation and phytoplankton during the Middle Eocene greenhouse climate: A 640 kyr record from the Messel oil shale (Germany). Int J Earth Sci (Geol Rundsch) 100:1851–1874. doi:10.1007/s00531-010-0609-z

  • Lorenz V (2000) Formation of maar-diatreme-volcanoes. International Maar Conference. Terra Nostra 2000(6):284–291

    Google Scholar 

  • Lourens LJ, Hilgen FJ, Laskar J, Shackleton NJ, Wilson D (2004) The Neogene period. In: Gradstein FM, Ogg JG, Smith AG (eds) Geologic time scale. Cambridge University Press, Cambridge, pp 409–440

    Google Scholar 

  • Lourens LJ, Sluijs A, Kroon D, Zachos JC, Thomas E, Röhl U, Bowles J, Raffi I (2005) Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435:1083–1087. doi:10.1038/nature03814

    Article  Google Scholar 

  • Loutre MF, Paillard D, Vimeux F, Cortijo E (2004) Does mean annual insolation have the potential to change the climate? Earth Planet Sci Lett 221:1–14

    Article  Google Scholar 

  • Matthess G (1956) Ein Beitrag zur Geologie des Ölschiefervorkommens von Messel bei Darmstadt. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereines, Neue Folge 38:11–21

    Article  Google Scholar 

  • Merlis TM, Schneider T, Bordoni S, Eisenman I (2013) The tropical precipitation response to orbital precession. J Clim 26:2010–2021

    Article  Google Scholar 

  • Mertz DF, Renne PR (2005) A numerical age for the Messel fossil deposit (UNESCO World Heritage Site) derived from 40Ar/39Ar dating on a basaltic rock fragment. In: Harms FJ, Schaal S (eds) Current Geological and Paleontological research in the Messel Formation. Cour For Senckenbg 255:67–75

  • Molina E, Alegret L, Apellaniz E, Bernaola G, Caballero F, Dinarès-Turell J, Hardenbol J, Heilman-Clausen C, Larrasoaña JC, Luterbacher H, Monechi S, Ortiz S, Orue-Etxebarria X, Payros A, Pujalte V, Rodríguez-Tovar FJ, Tori F, Tosquella J, Uchman A (2011) The Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage at the Gorrondatxe section, Spain. Episodes 34:86–108

    Google Scholar 

  • Mourik AA, Bijkerk JF, Cascella A, Hüsing SK, Hilgen FJ, Lourens LJ, Turco E (2010) Astronomical tuning of the La Vedova High Cliff section (Ancona, Italy)—implications of the Middle Miocene Climate Transition for Mediterranean sapropel formation. Earth Planet Sci Lett 297:249–261. doi:10.1016/j.epsl.2010.06.026

    Article  Google Scholar 

  • Nickel B (1996) Die mitteleozäne Mikroflora von Eckfeld bei Manderscheid/Eifel. Mainzer Naturwiss Arch Beiheft 18:1–121

    Google Scholar 

  • Popescu SM, Suc JP, Loutre MF (2006) Early Pliocene vegetation changes forced by eccentricity-precession. Example from Southwestern Romania. Palaeogeogr Palaeoclimatol 238:340–348

    Article  Google Scholar 

  • Renne PR (2013) Some footnotes to the optimization-based calibration of the 40Ar/39Ar system. In: Jourdan F, Mark DF, Verati C (eds) Advances in 40Ar/39Ar dating: from archaeology to planetary sciences. Geol Soc Lond Spec Publ 378:21–31. doi:10.1144/SP378.17

  • Renne PR, Swisher CC, Deino AL, Karner DB, Owens T, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152

    Article  Google Scholar 

  • Renne PR, Mundil R, Balco G, Min KW, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar chronology. Geochim Cosmochim Ac 74:5349–5367

    Article  Google Scholar 

  • Renne PR, Balco G, Ludwig KR, Mundil R, Min KW et al (2011) Response to the comment by W.H. Schwarz, on “Joint determination of 40 K decay constants and 40Ar*/40 K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar chronology” by PR Renne et al. (2010). Geochim Cosmochim Acta 75:5097–5100

    Article  Google Scholar 

  • Rivera TA, Storey M, Zeeden C, Hilgen FJ, Kuiper K (2011) A refined astronomically calibrated 40Ar/39Ar age for Fish Canyon sanidine. Earth Planet Sci Lett 311:420–426

    Article  Google Scholar 

  • Röhl U, Bralower TJ, Norris RD, Wefer G (2000) New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28:927–930

    Article  Google Scholar 

  • Röhl U, Westerhold T, Monechi S, Thomas E, Zachos JC, Donner B (2005) The third and final Early Eocene Thermal Maximum: characteristics, timing and mechanisms of the “X” event. Geol Soc Am Abstr Prog 37(7):264

    Google Scholar 

  • Schulz R, Harms FJ, Felder M (2002) Die Forschungsbohrung Messel 2001: Ein Beitrag zur Entschlüsselung der Genese einer Ölschieferlagerstätte. Z Angew Geol 48:9–17

    Google Scholar 

  • Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics 21:1006. doi:10.1029/2001TC900022,200

    Article  Google Scholar 

  • Sluijs A, Schouten S, Donders TH, Schoon PL, Röhl U, Reichart GJ, Sangiorgi F, Kim JH, Sinninghe Damsté JS, Brinkhuis H (2009) Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat Geosci 2:777–780. doi:10.1038/ngeo668

    Article  Google Scholar 

  • Tuenter E, Weber SL, Hilgen FJ, Lourens LJ, Ganopolski A (2005) Simulation of climate phase lags in response to precession and obliquity forcing and the role of vegetation. Clim Dyn 24:279–295

    Article  Google Scholar 

  • Van Vugt N, Langereis CG, Hilgen FJ (2001) Orbital forcing in Pliocene-Pleistocene Mediterranean lacustrine deposits: dominant expression of eccentricity versus precession. Palaeogeogr Palaeoclimatol 172:193–205

    Article  Google Scholar 

  • Varadi F, Runnegar B, Ghil M (2003) Successive refinements in long-term integrations of planetary orbits. Astrophys J 592:620–630. doi:10.1086/375560

    Article  Google Scholar 

  • Westerhold T, Röhl U, Raffi I, Fornaciari E, Monechi S, Reale V, Bowles J, Evans HF (2008) Astronomical calibration of the Paleocene time. Palaeogeogr Palaeoclimatol 257:377–403. doi:10.1016/j.palaeo.2007.09.016

    Article  Google Scholar 

  • Westerhold T, Röhl U, Laskar J (2012) Time scale controversy: accurate orbital calibration of the early Paleogene. Geochem Geophy Geosyst 13:Q06015. doi:10.1029/2012GC004096

    Article  Google Scholar 

  • Wing SL, Currano ED (2013) Plant response to a global greenhouse event 56 million years ago. Am J Bot 100:1234–1254

    Article  Google Scholar 

  • Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH (2005) Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993–996

    Article  Google Scholar 

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 to present. Science 292:686–693. doi:10.1126/science.1059412

    Article  Google Scholar 

  • Zachos JC, Mc Carren H, Murphy B, Röhl U, Westerhold T (2010) Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals. Earth Planet Sci Lett 299:242–249

    Article  Google Scholar 

Download references

Acknowledgments

Our research has been carried out as part of a project granted by the Deutsche Forschungsgemeinschaft (DFG-grant Wi 1676/6). Dr. M. Felder and Dr. F.-J. Harms helpfully provided additional information on the Messel drill core. Dr. P.R. Renne made an Excel workbook available for calculating of 40Ar/39Ar age uncertainties taking into account correlated uncertainties using Monte Carlo methods. Constructive comments by two anonymous reviewers substantially improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf K. Lenz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenz, O.K., Wilde, V., Mertz, D.F. et al. New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany). Int J Earth Sci (Geol Rundsch) 104, 873–889 (2015). https://doi.org/10.1007/s00531-014-1126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1126-2

Keywords

Navigation