Skip to main content

Advertisement

Log in

Analytic second-order energy derivatives in natural orbital functional theory

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The analytic energy gradients in the atomic orbital representation have recently been published (Mitxelena and Piris in J Chem Phys 146:014102, 2017) within the framework of the natural orbital functional theory (NOFT). We provide here an alternative expression for them in terms of natural orbitals, and use it to derive the analytic second-order energy derivatives with respect to nuclear displacements in the NOFT. The computational burden is shifted to the calculation of perturbed natural orbitals and occupancies, since a set of linear coupled-perturbed equations obtained from the variational Euler equations must be solved to attain the analytic Hessian at the perturbed geometry. The linear response of both natural orbitals and occupation numbers to nuclear geometry displacements need only specify the reconstruction of the second-order reduced density matrix in terms of occupation numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Papai, A. St-Amant, J. Ushio, D. Salahub, Int. J. Quant. Chem. 38, 29 (1990)

    Article  Google Scholar 

  2. M. Frisch, M. Head-Gordon, J. Pople, Chem. Phys. Lett. 141, 189 (1990)

    Google Scholar 

  3. J. Russel Thomas, J. DeLeeuw Bradley, T. George Vacek, J. Chem. Phys. 99, 403 (1993)

    Article  Google Scholar 

  4. M.W. Wong, Chem. Phys. Lett. 256, 391 (1996)

    Article  CAS  Google Scholar 

  5. P. Pulay, WIREs Comput. Mol. Sci. 4, 169 (2014)

    Article  CAS  Google Scholar 

  6. Y. Yamaguchi, H.F. Schaefer, Analytic Derivative Methods in Molecular Electronic Structure Theory : A New Dimension to Quantum Chemistry and its Applications to Spectroscopy (John Wiley and Sons, LTD, Hoboken, 2011)

    Google Scholar 

  7. I. Mitxelena, M. Piris, J. Chem. Phys. 144, 204108 (2016)

    Article  Google Scholar 

  8. A.J.S. Valentine, D.A. Mazziotti, Chem. Phys. Lett. 685, 300–304 (2017)

    Article  CAS  Google Scholar 

  9. D. A. Mazziotti, in Reduced-Density-Matrix Mechanics: With Applications to Many-Electron Atoms and Molecules, chap. 3, 1st ed. by D. A. Mazziotti (John Wiley and Sons, Hoboken, New Jersey, USA, 2007), pp. 21–59

  10. A.Y. Sokolov, J.J. Wilke, A.C. Simmonett, H.F. Schaefer, J. Chem. Phys. 137, 204110 (2012)

    Article  Google Scholar 

  11. M. Piris, J.M. Ugalde, Int. J. Quant. Chem. 114, 1169 (2014). (and references therein)

    Article  CAS  Google Scholar 

  12. David A. Mazziotti, Phys. Rev. Lett. 117, 153001 (2016)

    Article  Google Scholar 

  13. A.W. Schlimgen, C.W. Heaps, D.A. Mazziotti, J. Phys. Chem. Lett. 7(4), 627–631 (2016)

    Article  CAS  Google Scholar 

  14. A.R. McIsaac, David A. Mazziotti, Phys. Chem. Chem. Phys. 19, 4656–4660 (2017)

    Article  CAS  Google Scholar 

  15. A.J. Coleman, Rev. Mod. Phys. 35, 668 (1963)

    Article  Google Scholar 

  16. M. Piris, in Reduced-Density-Matrix Mechanics: With Applications to Many-Electron Atoms and Molecules, chap. 14, ed. by D. A. Mazziotti (John Wiley and Sons, Hoboken, New Jersey, USA, 2007), pp. 387–427

  17. M. Piris, in Many-Body Approaches at Different Scales: A Tribute to N. H. March on the Ocasion of his 90th Birthday, chap. 22, ed. by G.G.N. Angilella, C. Amovilli (Springer, New York, USA, 2017), pp. 231–247

  18. K. Pernal, K.J.H. Giesbertz, Top Curr Chem. 368, 125 (2016). (and references therein)

    Article  CAS  Google Scholar 

  19. I. Mitxelena, M. Piris, J. Chem. Phys. 146, 014102 (2017)

    Article  Google Scholar 

  20. M. Piris, J.M. Ugalde, J. Comput. Chem. 30, 2078 (2009)

    Article  CAS  Google Scholar 

  21. K. Pernal, E.J. Baerends, J. Chem. Phys. 124, 014102 (2006)

    Article  Google Scholar 

  22. K.J.H. Giesbertz, Ph.D. thesis, Vrije Universiteit, Amsterdam, The Netherlands (2010)

Download references

Acknowledgements

Financial support comes from Eusko Jaurlaritza (Ref. IT588-13) and Ministerio de Economia y Competitividad (Ref. CTQ2015-67608-P). One of us (I.M.) is grateful to Vice-Rectory for research of the UPV/EHU for the Ph.D. Grant (PIF//15/043). The SGI/IZO–SGIker UPV/EHU is gratefully acknowledged for generous allocation of computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Piris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitxelena, I., Piris, M. Analytic second-order energy derivatives in natural orbital functional theory. J Math Chem 56, 1445–1455 (2018). https://doi.org/10.1007/s10910-018-0870-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0870-0

Keywords

Navigation