Skip to main content
Log in

Mussel-Inspired Deposition of Ag Nanoparticles on Dopamine-Modified Cotton Fabric and Analysis of its Functional, Mechanical and Dyeing Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Textile fabrics with functional properties have a huge interest in many applications, including protective clothing, packaging materials, and healthcare, etc. This study aims to modify textile fabric’s surface and investigate the potentiality of Ag nanoparticles for the preparation of value-added and improved functional textiles. It demonstrates the mussel-inspired in-situ deposition of Ag nanoparticles on cotton fabric pre-modified by dopamine molecules. Surface characterization of nano-Ag deposited fabric is done by SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive Spectroscopy) by which the well deposition of Ag nanoparticles is confirmed. The crystalline size of the Ag nanoparticles has been determined by SEM and X-ray diffraction spectroscopy. As functional properties, antimicrobial activity, UV protection, and crease resistance are investigated. The results reveal that the nano-Ag deposition introduces the excellent antibacterial property to cotton fabric against S. aureus (gram-positive) and E. coli (gram-negative). The fabric shows good UV protection power and significant crease resistance. The fabric has also been dyed with reactive dyestuff, and improved dyeing performance is found. Importantly, no significant changes in mechanical properties of the textile cotton fabric are found by surface modification and deposition of Ag nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SEM:

Scanning electron microscopy

EDS:

Energy dispersive spectroscopy

XRD:

X-ray dispersive spectroscopy

FTIR:

Fourier transform infrared spectroscopy

WI:

Whiteness Index

K/S:

Color strength

UV:

Ultraviolet

AATCC:

The American Association of Textile Chemists and Colorists

References

  1. K. Chand, D. Cao, D. Eldin Fouad, A. Hussain Shah, A. Qadeer Dayo, K. Zhu, M. Nazim Lakhan, G. Mehdi, S. Dong, Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab. J. Chem. 13, 8248–8261 (2020). https://doi.org/10.1016/j.arabjc.2020.01.009

    Article  CAS  Google Scholar 

  2. M.C. Roco, Nanoparticles and nanotechnology research. J. Nanoparticle Res. 1, 1–6 (1999). https://doi.org/10.1023/A:1010093308079

    Article  Google Scholar 

  3. N. Nagar, V. Devra, Textile dyes degradation from activated peroxomonosulphate by green synthesize silver nanoparticles: a kinetic study. J. Inorg. Organomet. Polym. Mater. 29, 1645–1657 (2019). https://doi.org/10.1007/s10904-019-01127-x

    Article  CAS  Google Scholar 

  4. P.J. Rivero, A. Urrutia, J. Goicoechea, F.J. Arregui, Nanomaterials for functional textiles and fibers. Nanoscale Res. Lett. (2015). https://doi.org/10.1186/s11671-015-1195-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. N. Vigneshwaran, Modification of textile surfaces using nanoparticles. Surf. Modif. Text. (2009). https://doi.org/10.1533/9781845696689.164

    Article  Google Scholar 

  6. K. Patra, Application of nanotechnology in textile engineering: an overview. J. Eng. Technol. Res. (2013). https://doi.org/10.5897/jetr2013.0309

    Article  Google Scholar 

  7. M. Asadullah Jahangir, S. Sarim Imam, A. Muheem, K. Yamini, Silver nanoparticles: the good, the bad and the future research and reviews. J. Pharm. Nanotechnol. 4, 1–10 (2016)

    Article  Google Scholar 

  8. K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Synthesis of silver nanoparticles through chemical reduction and its antibacterial effect. J. Magn. Magn. Mater. 327, 159–166 (2013). https://doi.org/10.1016/j.jmmm.2012.09.013

    Article  CAS  Google Scholar 

  9. A. Harada, H. Ichimaru, T. Kawagoe, M. Tsushida, Y. Niidome, H. Tsutsuki, T. Sawa, T. Niidome, Gold-treated silver nanoparticles have enhanced antimicrobial activity. Bull. Chem. Soc. Jpn. 92, 297–301 (2019). https://doi.org/10.1246/bcsj.20180232

    Article  CAS  Google Scholar 

  10. E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A.M. Silva, A. Durazzo, A. Santini, M.L. Garcia, E.B. Souto, Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10, 1–43 (2020). https://doi.org/10.3390/nano10020292

    Article  CAS  Google Scholar 

  11. Shahid-Ul-Islam, B.S. Butola, F. Mohammad, Silver nanomaterials as future colorants and potential antimicrobial agents for natural and synthetic textile materials. RSC Adv. (2016). https://doi.org/10.1039/c6ra05799c

    Article  Google Scholar 

  12. M. Radetić, Functionalization of textile materials with silver nanoparticles. J. Mater. Sci. (2013). https://doi.org/10.1007/s10853-012-6677-7

    Article  Google Scholar 

  13. A.C. Gomathi, S.R. Xavier Rajarathinam, A. Mohammed Sadiq, S. Rajeshkumar, Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J. Drug Deliv. Sci. Technol. 55, 101376 (2020). https://doi.org/10.1016/j.jddst.2019.101376

    Article  CAS  Google Scholar 

  14. Y. Junejo, M. Safdar, M.A. Akhtar, M. Saravanan, H. Anwar, M. Babar, R. Bibi, M.T. Pervez, T. Hussain, M.E. Babar, Synthesis of tobramycin stabilized silver nanoparticles and its catalytic and antibacterial activity against pathogenic bacteria. J. Inorg. Organomet. Polym. Mater. 29, 111–120 (2019). https://doi.org/10.1007/s10904-018-0971-z

    Article  CAS  Google Scholar 

  15. A.K. Mishra, K.N. Tiwari, R. Saini, P. Kumar, S.K. Mishra, V.B. Yadav, G. Nath, Green synthesis of silver nanoparticles from leaf extract of Nyctanthes arbortristis L. and assessment of its antioxidant, antimicrobial response. J. Inorg. Organomet. Polym. Mater. 30, 2266–2278 (2020). https://doi.org/10.1007/s10904-019-01392-w

    Article  CAS  Google Scholar 

  16. A.G. Rama Krishna, C.S. Espenti, Y.V. Rami Reddy, A. Obbu, M.V. Satyanarayana, Green synthesis of silver nanoparticles by using sansevieria roxburghiana, their characterization and antibacterial activity. J. Inorg. Organomet. Polym. Mater. 30, 4155–4159 (2020). https://doi.org/10.1007/s10904-020-01567-w

    Article  CAS  Google Scholar 

  17. F. Zhang, X. Wu, Y. Chen, H. Lin, Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fibers Polym. (2009). https://doi.org/10.1007/s12221-009-0496-8

    Article  Google Scholar 

  18. S. Ghosh, S. Yadav, N. Reynolds, Antibacterial properties of cotton fabric treated with silver nanoparticles. J. Text. Inst. 101, 917–924 (2010). https://doi.org/10.1080/00405000903031053

    Article  CAS  Google Scholar 

  19. I.S. Tania, M. Ali, Z. Islam, Solaiman, Development of antimicrobial activity and mechanical performances of cotton fabric treated with silver nano particles (AgNPs), in AIP Conf. Proc. 2121, 2019, p. 15003. https://doi.org/10.1063/1.5115968.

  20. T. Jiang, L. Liu, J. Yao, In situ deposition of silver nanoparticles on the cotton fabrics. Fibers Polym. 12, 620–625 (2011). https://doi.org/10.1007/s12221-011-0620-4

    Article  CAS  Google Scholar 

  21. I.S. Tania, M. Ali, M.T. Arafat, 6—Processing techniques of antimicrobial textiles, in Text. Inst. B. Ser., ed. by M.I.H.B.T.-A.T. from N.R. Mondal (Woodhead Publishing, 2021), pp. 189–215. https://doi.org/10.1016/B978-0-12-821485-5.00002-0.

  22. I.S. Tania, M. Ali, M.S. Azam, In-situ synthesis and characterization of silver nanoparticle decorated cotton knitted fabric for antibacterial activity and improved dyeing performance. SN Appl. Sci. 1, 1–9 (2019). https://doi.org/10.1007/s42452-018-0068-x

    Article  CAS  Google Scholar 

  23. I.I. Niyonshuti, V.R. Krishnamurthi, D. Okyere, L. Song, M. Benamara, X. Tong, Y. Wang, J. Chen, Polydopamine surface coating synergizes the antimicrobial activity of silver nanoparticles. ACS Appl. Mater. Interfaces. 12, 40067–40077 (2020). https://doi.org/10.1021/acsami.0c10517

    Article  CAS  PubMed  Google Scholar 

  24. W. Chen, S. Zhang, L. Sun, M. Zhang, X. Chen, Surface modification of polypropylene nonwoven fabrics by grafting of polydopamine. Adv. Polym. Technol. 37, 3519–3528 (2018)

    Article  CAS  Google Scholar 

  25. R. Liu, Y.L. Guo, G. Odusote, F.L. Qu, R.D. Priestley, C. Fe, O 4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent. ACS Appl Mater. Int. 5, 9167–9171 (2013)

    Article  CAS  Google Scholar 

  26. M.S. Islam, N. Akter, M.M. Rahman, C. Shi, M.T. Islam, H. Zeng, M.S. Azam, Mussel-inspired immobilization of silver nanoparticles toward antimicrobial cellulose paper. ACS Sustain. Chem. Eng. 6, 9178–9188 (2018). https://doi.org/10.1021/acssuschemeng.8b01523

    Article  CAS  Google Scholar 

  27. A. Hamad, K.S. Khashan, A. Hadi, Silver nanoparticles and silver ions as potential antibacterial agents. J. Inorg. Organomet. Polym. Mater. 30, 4811–4828 (2020). https://doi.org/10.1007/s10904-020-01744-x

    Article  CAS  Google Scholar 

  28. H. Liu, L. Zhu, J. Xue, L. Hao, J. Li, Y. He, B. Cheng, A novel two-step method for fabricating silver plating cotton fabrics. J. Nanomater. (2016). https://doi.org/10.1155/2016/2375836

    Article  Google Scholar 

  29. Y. Cai, R. Tao, G. He, H. Song, K. Zuo, H. Jiang, W. Wang, One-step synthesis of silver nanoparticles on polydopamine-coated sericin/polyvinyl alcohol composite films for potential antimicrobial applications. Molecules 22, 721 (2017)

    Article  Google Scholar 

  30. X.-H. Kuang, J.-P. Guan, R.-C. Tang, G.-Q. Chen, Surface functionalization of polyamide fiber via dopamine polymerization. Mater. Res. Express. 4, 95302 (2017). https://doi.org/10.1088/2053-1591/aa7fc6

    Article  CAS  Google Scholar 

  31. M. Li, K. Cheng, C. Wang, S. Lu, Functionalize aramid fibers with polydopamine to possess UV resistance. J. Inorg. Organomet. Polym. Mater. (2021). https://doi.org/10.1007/s10904-021-01910-9

    Article  Google Scholar 

  32. G.Q. Kuang, X.H. Guan, J.P. Chen, W. Tang, R.C. Cheng, Coloration and functional modification of silk fiber via dopamine polymerization, in 2017 2nd International Conference on Materials Science (Atlantis Press, 2017), pp. 795–798.

  33. Z.A. Raza, A. Rehman, F. Anwar, A. Usman, Development and antibacterial performance of silver nanoparticles incorporated polydopamine–polyester-knitted fabric. Bull. Mater. Sci. 39, 391–396 (2016)

    Article  CAS  Google Scholar 

  34. G. Rajkumar, M. Rajkumar, V. Rajendran, S. Aravindan, Influence of Ag2O in physico-chemical properties and HAp precipitation on phosphate-based glasses. J. Am. Ceram. Soc. 94, 2918–2925 (2011). https://doi.org/10.1111/j.1551-2916.2011.04725.x

    Article  CAS  Google Scholar 

  35. N. Erdman, D.C. Bell, R. Reichelt, in Scanning Electron Microscopy BT - Springer Handbook of Microscopy, ed. By P.W. Hawkes, J.C.H. Spence (Springer International Publishing, Cham, 2019), pp. 229–318. https://doi.org/10.1007/978-3-030-00069-1_5.

  36. V. Vishwakarma, S. Uthaman, 9—Environmental impact of sustainable green concrete, in Micro Nano Technol., ed. by M.S. Liew, P. Nguyen-Tri, T.A. Nguyen, S.B.T.-S.N. and C.-B.M. Kakooei (Elsevier, 2020), pp. 241–255. https://doi.org/10.1016/B978-0-12-817854-6.00009-X.

  37. G. Rajkumar, V. Dhivya, S. Mahalaxmi, K. Rajkumar, G.K. Sathishkumar, R. Karpagam, Influence of fluoride for enhancing bioactivity onto phosphate based glasses. J. Non. Cryst. Solids. 493, 108–118 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.04.046

    Article  CAS  Google Scholar 

  38. F. Mahnaz, M. Mostafa-Al-Momin, M. Rubel, M. Ferdous, M.S. Azam, Mussel-inspired immobilization of Au on bare and graphene-wrapped Ni nanoparticles toward highly efficient and easily recyclable catalysts. RSC Adv. 9, 30358–30369 (2019). https://doi.org/10.1039/c9ra05736f

    Article  CAS  Google Scholar 

  39. I.S. Tania, M. Ali, R.H. Bhuiyan, Experimental study on dyeing performance and antibacterial activity of silver nanoparticle-immobilized cotton woven fabric. Autex Res. J. 21, 45–51 (2021). https://doi.org/10.2478/aut-2019-0074

    Article  Google Scholar 

  40. F. Ferrero, M. Periolatto, Antimicrobial finish of textiles by chitosan UV-curing. J. Nanosci. Nanotechnol. 12, 4803–4810 (2012). https://doi.org/10.1166/jnn.2012.4902

    Article  CAS  PubMed  Google Scholar 

  41. E. Ali, H.-T. El-Zanfaly, Application of antimicrobials in the development of textiles. Asian J. Appl. Sci. 4, 585–595 (2011)

    Article  Google Scholar 

  42. H.M.M. Ibrahim, M.S. Hassan, Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles. Carbohydr. Polym. 151, 841–850 (2016). https://doi.org/10.1016/j.carbpol.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  43. AATCC Test Method 66–2008, Wrinkle recovery of woven fabrics: recovery angle, AATCC Technical Manual, American Association of Textile Chemists and Colorists, Research Triangle Park, NC, pp. 91–94, (2010).

  44. T. Dutta, A.P. Chattopadhyay, M. Mandal, N.N. Ghosh, V. Mandal, M. Das, Facile green synthesis of silver bionanocomposite with size dependent antibacterial and synergistic effects: a combined experimental and theoretical studies. J. Inorg. Organomet. Polym. Mater. 30, 1839–1851 (2020). https://doi.org/10.1007/s10904-019-01332-8

    Article  CAS  Google Scholar 

  45. T. Theivasanthi, M. Alagar, Electrolytic synthesis and characterization of silver nanopowder. Nano Biomed. Eng. (2012). https://doi.org/10.5101/nbe.v4i2.p58-65

    Article  Google Scholar 

  46. N. Agasti, N.K. Kaushik, One pot synthesis of crystalline silver nanoparticles. Am. J. Nanomater. 2, 4–7 (2014)

    CAS  Google Scholar 

  47. Q.Y. Chen, S.L. Xiao, S.Q. Shi, L.P. Cai, A one-pot synthesis and characterization of antibacterial silver nanoparticle-cellulose film. Polymers (Basel) (2020). https://doi.org/10.3390/polym12020440

    Article  PubMed  PubMed Central  Google Scholar 

  48. P. Peets, K. Kaupmees, S. Vahur, I. Leito, Reflectance FT-IR spectroscopy as a viable option for textile fiber identification. Herit. Sci. 7, 1–10 (2019). https://doi.org/10.1186/s40494-019-0337-z

    Article  CAS  Google Scholar 

  49. K.W. Fan, A.M. Granville, Surface property modification of silver nanoparticles with dopamine-functionalized poly(pentafluorostyrene) via RAFT polymerization. Polymers (Basel). 8, 1–12 (2016). https://doi.org/10.3390/polym8030081

    Article  CAS  Google Scholar 

  50. S. Li, T. Zhu, J. Huang, Q. Guo, G. Chen, Y. Lai, Durable antibacterial and UV-protective Ag/TiO2@fabrics for sustainable biomedical application. Int. J. Nanomedicine. 12, 2593–2606 (2017). https://doi.org/10.2147/IJN.S132035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Z. Lu, J. Xiao, Y. Wang, M. Meng, In situ synthesis of silver nanoparticles uniformly distributed on polydopamine-coated silk fibers for antibacterial application. J. Colloid Interface Sci. 452, 8–14 (2015). https://doi.org/10.1016/j.jcis.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  52. S. Rajaboopathi, S. Thambidurai, Evaluation of UPF and antibacterial activity of cotton fabric coated with colloidal seaweed extract functionalized silver nanoparticles. J. Photochem. Photobiol. B Biol. 183, 75–87 (2018). https://doi.org/10.1016/j.jphotobiol.2018.04.028

    Article  CAS  Google Scholar 

  53. S. Mahmud, M.Z. Sultana, M.N. Pervez, M.A. Habib, H.H. Liu, Surface functionalization of “Rajshahi silk” using green silver nanoparticles. Fibers. 5, 1–18 (2017). https://doi.org/10.3390/fib5030035

    Article  CAS  Google Scholar 

  54. M. Shateri-Khalilabad, M.E. Yazdanshenas, A. Etemadifar, Fabricating multifunctional silver nanoparticles-coated cotton fabric. Arab. J. Chem. 10, S2355–S2362 (2017). https://doi.org/10.1016/j.arabjc.2013.08.013

    Article  CAS  Google Scholar 

  55. Z. Bilimis, Measuring the UV protection factor (UPF) of fabrics and clothing, Apl. Note, Agil. Technol. Inc., Aust. (2011) 1–4.

  56. I.S. Tania, S.M.M. Kabir, M.Z. Uddin, Effects of resin treatments on the quality of cotton fabric dyed with reactive dye. Fibres Text. East. Eur. 26, 102–107 (2018). https://doi.org/10.5604/01.3001.0010.7804

    Article  CAS  Google Scholar 

  57. M. Rehan, A. Barhoum, G. Van Assche, A. Dufresne, L. Gätjen, R. Wilken, Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics. Int. J. Biol. Macromol. 98, 877–886 (2017). https://doi.org/10.1016/j.ijbiomac.2017.02.058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors like to express their cordial thanks and gratitude to the Mechanical engineering department of BUET for supporting this experimental work. We are thankful to Glass and Ceramics Engineering, and the Biomedical Engineering departments of BUET for characterization analysis and antibacterial test. We also appreciate Dr. Mamun Kabir, Associate Professor, BUTEX, collecting UV data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imana Shahrin Tania.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tania, I.S., Ali, M. & Azam, M.S. Mussel-Inspired Deposition of Ag Nanoparticles on Dopamine-Modified Cotton Fabric and Analysis of its Functional, Mechanical and Dyeing Properties. J Inorg Organomet Polym 31, 4065–4076 (2021). https://doi.org/10.1007/s10904-021-02034-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02034-w

Keywords

Navigation