Skip to main content
Log in

Boosting of Power Conversion Efficiency of 2D ZnO Nanostructures-Based DSSC by the Lorentz Force with Chitosan Polymer Electrolyte

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs) fabricated from titanium tetra-isopropoxide (TTIP) treated Li doped two dimensional (2D) ZnO nanostructures based photoelectrode with chitosan polymer electrolyte is reported here. The defect induced room temperature ferromagnetism (RTFM) is observed and has been established from the bound magnetic polaron mechanism (BMP) for an optimum concentration of Li doped ZnO (ZnO:Li) nanostructures. Also, the incorporation of Li in the 2D ZnO nanostructure (2DZL) reduces the charge transfer resistance and hence an enhanced PCE of 5.58% (which is about two and half times superior to that of pristine ZnO). As the fabricated 2DZL exhibits RTFM, a field of 200 Oe when applied to this DSSC showed an improved PCE of 5.83%. The mechanism of such an enhancement is explained from the effect of Lorentz force and the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001). https://doi.org/10.1002/1521-4095(200101)13:2<113:AID-ADMA113>3.0.CO;2-H

    Article  CAS  Google Scholar 

  2. C.Y. Kung, C.C. Lin, S.L. Young, L. Horng, Y.T. Shih, M.C. Kao, H.Z. Chen, H.H. Lin, J.H. Lin, S.J. Wang, J.M. Li, Influence of Li doping on the optical and magnetic properties of ZnO nanorods synthesized by low temperature hydrothermal method. Thin Solid Films 529, 181–184 (2013). https://doi.org/10.1016/j.tsf.2012.05.044

    Article  CAS  Google Scholar 

  3. E. Praveen, S. Murugan, K. Jayakumar, Nano ZnO embedded in chitosan matrix for vibration sensor application. AIP Conf. Proc. 50032, 1–3 (2015). https://doi.org/10.1063/1.4917673

    Article  CAS  Google Scholar 

  4. E. Praveen, K. Jayakumar, Effect of morphology on the non-ohmic conduction in ZnO nanostructures. AIP Conf. Proc. 1731, 1–3 (2016). https://doi.org/10.1063/1.4947677

    Article  CAS  Google Scholar 

  5. I. John Peter, E. Praveen, G. Vignesh, P. Nithiananthi, ZnO nanostructures with different morphology for enhanced photocatalytic activity. Mater. Res. Express. 4(124003), 1–11 (2017). https://doi.org/10.1088/2053-1591/aa9d5d

    Article  CAS  Google Scholar 

  6. E. Praveen, K. Jayakumar, Sensitivity enhancement of mechanical sensing element via self-assembled ferroelectric ZnO nanoflowers. Mater. Chem. Phys. 223, 190–195 (2019). https://doi.org/10.1016/J.MATCHEMPHYS.2018.10.065

    Article  CAS  Google Scholar 

  7. N.R. Reddy, U. Bhargav, M.M. Kumari, K.K. Cheralathan, M.V. Shankar, K.R. Reddy, T.A. Saleh, T.M. Aminabhavi, Highly efficient solar light-driven photocatalytic hydrogen production over Cu/FCNTs-titania quantum dots-based heterostructures. J. Environ. Manag. 254, 109747 (2020). https://doi.org/10.1016/j.jenvman.2019.109747

    Article  CAS  Google Scholar 

  8. C.V. Reddy, I.N. Reddy, K. Ravindranadh, K.R. Reddy, N.P. Shetti, D. Kim, J. Shim, T.M. Aminabhavi, Copper-doped ZrO2 nanoparticles as high-performance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation. J. Environ. Manag. 260, 110088 (2020). https://doi.org/10.1016/j.jenvman.2020.110088

    Article  CAS  Google Scholar 

  9. R. Koutavarapu, B. Babu, C.V. Reddy, I.N. Reddy, K.R. Reddy, M.C. Rao, T.M. Aminabhavi, M. Cho, D. Kim, J. Shim, ZnO nanosheets-decorated Bi2WO6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water oxidation. J. Environ. Manag. 265, 110504 (2020). https://doi.org/10.1016/j.jenvman.2020.110504

    Article  CAS  Google Scholar 

  10. N.P. Shetti, S.J. Malode, D.S. Nayak, G.B. Bagihalli, S.S. Kalanur, R.S. Malladi, C.V. Reddy, T.M. Aminabhavi, K.R. Reddy, Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl. Surf. Sci. 496, 143656 (2019). https://doi.org/10.1016/j.apsusc.2019.143656

    Article  CAS  Google Scholar 

  11. P.S. Basavarajappa, B.N.H. Seethya, N. Ganganagappa, K.B. Eshwaraswamy, R.R. Kakarla, Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles. ChemistrySelect. 3, 9025–9033 (2018). https://doi.org/10.1002/slct.201801198

    Article  CAS  Google Scholar 

  12. K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.S. Lee, D. Sohn, Y. Lee, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scr. Mater. 58, 1010–1013 (2008). https://doi.org/10.1016/j.scriptamat.2008.01.047

    Article  CAS  Google Scholar 

  13. C. Venkata Reddy, I.N. Reddy, B. Akkinepally, K.R. Reddy, J. Shim, Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode. J. Alloys Compd. 814, 152349 (2020). https://doi.org/10.1016/j.jallcom.2019.152349

    Article  CAS  Google Scholar 

  14. V. Navakoteswara Rao, N. Lakshmana Reddy, M. Mamatha Kumari, P. Ravi, M. Sathish, K.M. K uruvilla, V. Preethi, K.R. Reddy, N.P. Shetti, T.M. Aminabhavi, M.V. Shankar, Photocatalytic recovery of H2 from H2S containing wastewater: Surface and interface control of photo-excitons in Cu2S@TiO2 core-shell nanostructures. Appl. Catal. B Environ. 254, 174–185 (2019). https://doi.org/10.1016/j.apcatb.2019.04.090

    Article  CAS  Google Scholar 

  15. C.V. Reddy, I.N. Reddy, K.R. Reddy, S. Jaesool, K. Yoo, Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment. Electrochim. Acta. 317, 416–426 (2019). https://doi.org/10.1016/j.electacta.2019.06.010

    Article  CAS  Google Scholar 

  16. N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surfaces B 178, 385–394 (2019). https://doi.org/10.1016/j.colsurfb.2019.03.013

    Article  CAS  Google Scholar 

  17. N.P. Shetti, D.S. Nayak, S.J. Malode, R.R. Kakarla, S.S. Shukla, T.M. Aminabhavi, Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal. Chim. Acta. 1051, 58–72 (2019). https://doi.org/10.1016/j.aca.2018.11.041

    Article  CAS  PubMed  Google Scholar 

  18. S.B. Patil, P.S. Basavarajappa, N. Ganganagappa, M.S. Jyothi, A.V. Raghu, K.R. Reddy, Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J. Hydrogen Energy. 44, 13022–13039 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.164

    Article  CAS  Google Scholar 

  19. S. Goel, N. Sinha, H. Yadav, S. Godara, A.J. Joseph, B. Kumar, Ferroelectric Gd-doped ZnO nanostructures: enhanced dielectric, ferroelectric and piezoelectric properties. Mater. Chem. Phys. 202, 56–64 (2017). https://doi.org/10.1016/j.matchemphys.2017.08.067

    Article  CAS  Google Scholar 

  20. A. Janotti, C.G. Van De Walle, Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 1–3 (2005). https://doi.org/10.1063/1.2053360

    Article  CAS  Google Scholar 

  21. M. Maekawa, H. Abe, A. Miyashita, S. Sakai, S. Yamamoto, A. Kawasuso, Vacancy-induced ferromagnetism in ZnO probed by spin-polarized positron annihilation spectroscopy. Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4979696

    Article  Google Scholar 

  22. A. Janotti, C.G. Van De Walle, Native point defects in ZnO. Phys. Rev. B 76, 1–22 (2007). https://doi.org/10.1103/PhysRevB.76.165202

    Article  CAS  Google Scholar 

  23. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, P. Jena, Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B 77, 1–7 (2008). https://doi.org/10.1103/PhysRevB.77.205411

    Article  CAS  Google Scholar 

  24. J.B. Yi, C.C. Lim, G.Z. Xing, H.M. Fan, L.H. Van, S.L. Huang, K.S. Yang, X.L. Huang, X.B. Qin, B.Y. Wang, T. Wu, L. Wang, H.T. Zhang, X.Y. Gao, T. Liu, A.T.S. Wee, Y.P. Feng, J. Ding, Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO. Phys. Rev. Lett. 104, 1–4 (2010). https://doi.org/10.1103/PhysRevLett.104.137201

    Article  CAS  Google Scholar 

  25. Q.J. Wang, J.B. Wang, X.L. Zhong, Q.H. Tan, Z. Hu, Y.C. Zhou, Magnetism mechanism in ZnO and ZnO doped with nonmagnetic elements X (X Li, Mg, and Al): a first-principles study. Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.3698096

    Article  PubMed  PubMed Central  Google Scholar 

  26. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673–677 (2003). https://doi.org/10.1038/nmat984

    Article  CAS  PubMed  Google Scholar 

  27. N. Rajkumar, K. Ramachandran, Structural, optical and magnetic investigations on undoped and Mn-Doped ZnO nanoparticles. Int. J. Nanosci. 9, 495–502 (2010). https://doi.org/10.1142/S0219581X10007150

    Article  CAS  Google Scholar 

  28. N. Rajkumar, K. Ramachandran, Observation of ferromagnetism in Mn-doped NANO ZnO. Int. J. Mod. Phys. B 23, 5881–5890 (2009). https://doi.org/10.1142/S0217979209054089

    Article  CAS  Google Scholar 

  29. W.H. Cheng, J.W. Chiou, M.Y. Tsai, J.S. Jeng, J.S. Chen, S.L.C. Hsu, W.Y. Chou, Lithium-induced defect levels in ZnO nanoparticles to facilitate electron transport in inverted organic photovoltaics. J. Phys. Chem. C. 120, 15035–15041 (2016). https://doi.org/10.1021/acs.jpcc.6b03656

    Article  CAS  Google Scholar 

  30. H.J. Choi, H.K. Seong, J. Chang, K. Lee, Y.J. Park, J.J. Kim, S.K. Lee, R. He, T. Kuykendall, P. Yang, Single-crystalline diluted magnetic semiconductor GaN: Mn nanowires. Adv. Mater. 17, 1351–1356 (2005). https://doi.org/10.1002/adma.200401706

    Article  CAS  Google Scholar 

  31. P. Olsson, J.F. Guillemoles, C. Domain, Towards improved photovoltaic conversion using dilute magnetic semiconductors. J. Phys. Condens. Matter. (2008). https://doi.org/10.1088/0953-8984/20/6/064226

    Article  PubMed  Google Scholar 

  32. J. Gopinath, R.K.C. Balasubramanyam, V. Santosh, S.K. Swami, D. Kishore Kumar, S.K. Gupta, V. Dutta, K.R. Reddy, V. Sadhu, A.V.S. Sainath, T.M. Aminabhavi, Novel anisotropic ordered polymeric materials based on metallopolymer precursors as dye sensitized solar cells. Chem. Eng. J. 358, 1166–1175 (2019). https://doi.org/10.1016/j.cej.2018.10.090

    Article  CAS  Google Scholar 

  33. K.R. Reddy, B. Hemavathi, G.R. Balakrishna, A.V. Raghu, S. Naveen, M.V. Shankar, Organic conjugated polymer-based functional nanohybrids: synthesis methods, mechanisms and its applications in electrochemical energy storage supercapacitors and solar cells (Elsevier, Amsterdam, 2018), pp. 357–379

    Google Scholar 

  34. D. Kishore Kumar, J. Loskot, J. Kříž, N. Bennett, H.M. Upadhyaya, V. Sadhu, C. Venkata Reddy, K.R. Reddy, Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications. Sol. Energy. 199, 570–574 (2020). https://doi.org/10.1016/j.solener.2020.02.050

    Article  CAS  Google Scholar 

  35. D. Kishore Kumar, J. Kříž, N. Bennett, B. Chen, H. Upadhayaya, K.R. Reddy, V. Sadhu, Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): a review. Mater. Sci. Energy Technol. 3, 472–481 (2020). https://doi.org/10.1016/j.mset.2020.03.003

    Article  Google Scholar 

  36. S. Ananthakumar, S.M. Babu, Coordinating effect of non-phosphine solvents on the structure and morphological properties of Cu2SnSe3 (CTSe) nanoparticles synthesized by hot-injection method. J. Inorg. Organomet. Polym. Mater 29, 477–482 (2019). https://doi.org/10.1007/s10904-018-1020-7

    Article  CAS  Google Scholar 

  37. M. Aliabadi, Controllable synthesis of NiSe2 nanostructures via hydrothermal process for photocatalytic and solar cell applications. J. Inorg. Organomet. Polym. Mater. 27, 73–79 (2017). https://doi.org/10.1007/s10904-016-0445-0

    Article  CAS  Google Scholar 

  38. M. Mousavi-Kamazani, M. Salavati-Niasari, M. Goudarzi, A. Gharehbaii, A facile novel sonochemical-assistance synthesis of nise2 quantum dots to improve the efficiency of dye-sensitized solar cells. J. Inorg. Organomet. Polym. Mater. 26, 259–263 (2016). https://doi.org/10.1007/s10904-015-0300-8

    Article  CAS  Google Scholar 

  39. T. Miyasaka, Lead halide perovskites in thin film photovoltaics: Background and perspectives. Bull. Chem. Soc. Jpn. 91, 1058–1068 (2018). https://doi.org/10.1246/bcsj.20180071

    Article  CAS  Google Scholar 

  40. A. Wadsworth, M. Moser, A. Marks, M.S. Little, N. Gasparini, C.J. Brabec, D. Baran, I. McCulloch, Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 48, 1596–1625 (2019). https://doi.org/10.1039/c7cs00892a

    Article  CAS  PubMed  Google Scholar 

  41. E. Praveen, K. Jayakumar, Investigations on structural, optical and ferromagnetic properties of Ni doped ZnO nanotwins. Mater. Sci. Semicond. Process. 102, 104609 (2019). https://doi.org/10.1016/j.mssp.2019.104609

    Article  CAS  Google Scholar 

  42. E. Praveen, S. Murugan, K. Jayakumar, Investigations on the existence of piezoelectric property of a bio-polymer-chitosan and its application in vibration sensors. RSC Adv. 7, 35490–35495 (2017). https://doi.org/10.1039/C7RA04752E

    Article  CAS  Google Scholar 

  43. E. Praveen, I. JohnPeter, A. MuthuKumar, K. Ramachandran, K. Jayakumar, Performance of ZnO/ZnS nanocomposite based dye-sensitized solar cell with chitosan-polymer electrolyte. Mater. Today Proc. (2019). https://doi.org/10.1016/j.matpr.2019.05.382

    Article  Google Scholar 

  44. U.M. Kannan, V.N. Muddisetti, G. Kotnana, J. Kandhadi, L. Giribabu, S.P. Singh, S.N. Jammalamadaka, Spin–orbit coupling and Lorentz force enhanced efficiency of TiO2-based dye sensitized solar cells. Phys. Status Solidi Appl. Mater. Sci. (2017). https://doi.org/10.1002/pssa.201600691

    Article  Google Scholar 

  45. Y.J. Lin, M.S. Wang, C.J. Liu, H.J. Huang, Defects, stress and abnormal shift of the (0 0 2) diffraction peak for Li-doped ZnO films. Appl. Surf. Sci. 256, 7623–7627 (2010). https://doi.org/10.1016/j.apsusc.2010.06.016

    Article  CAS  Google Scholar 

  46. Y.C. Tseng, Y.J. Lin, H.C. Chang, Y.H. Chen, C.J. Liu, Y.Y. Zou, Dependence of luminescent properties and crystal structure of Li-doped ZnO nanoparticles upon Li content. J. Lumin. 132, 1896–1899 (2012). https://doi.org/10.1016/j.jlumin.2012.03.009

    Article  CAS  Google Scholar 

  47. V.D. Mote, J.S. Dargad, B.N. Dole, Effect of Mn doping concentration on structural, morphological and optical studies of ZnO nano-particles. Nanosci. Nanoeng. 1, 116–122 (2013). https://doi.org/10.13189/nn.2013.010204

    Article  CAS  Google Scholar 

  48. Z. Lin, J. Chang, C. Zhang, J. Zhang, J. Wu, Y. Hao, Low temperature aqueous solution-processed Li doped ZnO buffer layers for high performance inverted organic solar cells. J. Mater. Chem. C. 4, 6169–6175 (2016). https://doi.org/10.1039/c6tc00760k

    Article  CAS  Google Scholar 

  49. C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu, X. Zhao, Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures. J. Cryst. Growth. 292, 19–25 (2006). https://doi.org/10.1016/j.jcrysgro.2006.03.061

    Article  CAS  Google Scholar 

  50. W.I. Park, G.C. Yi, Photoluminescent properties of ZnO thin films grown on SiO2/Si(100) by metal-organic chemical vapor deposition. J. Electron. Mater. 30, L32–L35 (2001). https://doi.org/10.1007/s11664-001-0127-7

    Article  CAS  Google Scholar 

  51. T. Nakagawa, I. Sakaguchi, K. Matsunaga, T. Yamamoto, H. Haneda, Y. Ikuhara, Control of point defects and grain boundaries in advanced materials: optical properties and diffusion induced by Li doping in ZnO. Nucl. Instru. Methods Phys. Res. Sect. B 232, 343–347 (2005). https://doi.org/10.1016/j.nimb.2005.03.070

    Article  CAS  Google Scholar 

  52. T.M. Børseth, B.G. Svensson, A.Y. Kuznetsov, P. Klason, Q.X. Zhao, M. Willander, Identification of oxygen and zinc vacancy optical signals in ZnO. Appl. Phys. Lett. 89, 1–4 (2006). https://doi.org/10.1063/1.2424641

    Article  CAS  Google Scholar 

  53. B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943–945 (2001). https://doi.org/10.1063/1.1394173

    Article  CAS  Google Scholar 

  54. Q.X. Zhao, P. Klason, M. Willander, H.M. Zhong, W. Lu, J.H. Yang, Deep-level emissions influenced by O and Zn implantations in ZnO. Appl. Phys. Lett. 87, 1–3 (2005). https://doi.org/10.1063/1.2135880

    Article  CAS  Google Scholar 

  55. A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, First-principles study of native point defects in ZnO. Phys. Rev. B. 61, 15019–15027 (2000). https://doi.org/10.1103/PhysRevB.61.15019

    Article  CAS  Google Scholar 

  56. A. Janotti, C.G. Van De Walle, New insights into the role of native point defects in ZnO. J. Cryst. Growth. 287, 58–65 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.043

    Article  CAS  Google Scholar 

  57. S.U. Awan, S.K. Hasanain, M.F. Bertino, G.H. Jaffari, Effects of substitutional Li on the ferromagnetic response of Li co-doped ZnO: Co nanoparticles. J. Phys. Condens. Matter. 25, 156005 (2013). https://doi.org/10.1088/0953-8984/25/15/156005

    Article  CAS  PubMed  Google Scholar 

  58. R.B.M. Cross, M.M. De Souza, E.M. SankaraNarayanan, A low temperature combination method for the production of ZnO nanowires. Nanotechnology 16, 2188–2192 (2005)

    Article  CAS  Google Scholar 

  59. X. Liu, X. Wu, H. Cao, R.P.H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95, 3141–3147 (2004). https://doi.org/10.1063/1.1646440

    Article  CAS  Google Scholar 

  60. V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink, M. Driess, Zinc oxide nanoparticles with defects. Adv. Funct. Mater. 15, 1945–1954 (2005). https://doi.org/10.1002/adfm.200500087

    Article  CAS  Google Scholar 

  61. X. Xu, C. Xu, J. Dai, J. Hu, F. Li, S. Zhang, Size dependence of defect-induced room temperature ferromagnetism in undoped ZnO nanoparticles. J. Phys. Chem. C. 116, 8813–8818 (2012). https://doi.org/10.1021/jp301474

    Article  CAS  Google Scholar 

  62. C. Rauch, W. Gehlhoff, M.R. Wagner, E. Malguth, G. Callsen, R. Kirste, B. Salameh, A. Hoffmann, S. Polarz, Y. Aksu, M. Driess, Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals. J. Appl. Phys. (2010). https://doi.org/10.1063/1.3275889

    Article  Google Scholar 

  63. D. Li, Y.H. Leung, A.B. Djurišić, Z.T. Liu, M.H. Xie, S.L. Shi, S.J. Xu, W.K. Chan, Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl. Phys. Lett. 85, 1601–1603 (2004). https://doi.org/10.1063/1.1786375

    Article  CAS  Google Scholar 

  64. S. Ghosh, G.G. Khan, B. Das, K. Mandal, Vacancy-induced intrinsic d0 ferromagnetism and photoluminescence in potassium doped ZnO nanowires. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3601340

    Article  Google Scholar 

  65. D.C. Reynolds, D.C. Look, B. Jogai, H. Morkoç, Similarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN. Solid State Commun. 101, 643–646 (1997). https://doi.org/10.1016/S0038-1098(96)00697-7

    Article  CAS  Google Scholar 

  66. J.M. Ferreyra, G. Bridoux, M. Villafuerte, B. Straube, J. Zamora, C.A. Figueroa, S.P. Heluani, Influence of the band bending on the photoconductivity of Li-doped ZnO microwires. Solid State Commun. 257, 42–46 (2017). https://doi.org/10.1016/j.ssc.2017.04.002

    Article  CAS  Google Scholar 

  67. D. Wang, J. Zhou, G. Liu, Effect of Li-doped concentration on the structure, optical and electrical properties of p-type ZnO thin films prepared by sol–gel method. J. Alloys Compd. 481, 802–805 (2009). https://doi.org/10.1016/j.jallcom.2009.03.111

    Article  CAS  Google Scholar 

  68. J. Hu, R.G. Gordon, Electrical and optical properties of indium doped zinc oxide films prepared by atmospheric pressure chemical vapor deposition. MRS Proc. 283, 891 (1992)

    Article  Google Scholar 

  69. Z. Zhang, K.E. Knutsen, T. Merz, A.Y. Kuznetsov, B.G. Svensson, L.J. Brillson, Thermal process dependence of Li configuration and electrical properties of Li-doped ZnO. Appl. Phys. Lett. 100, 97–100 (2012). https://doi.org/10.1063/1.3679708

    Article  CAS  Google Scholar 

  70. S. Chawla, K. Jayanthi, R.K. Kotnala, Room-temperature ferromagnetism in Li-doped p-type luminescent ZnO nanorods. Phys. Rev. B 79, 1–7 (2009). https://doi.org/10.1103/PhysRevB.79.125204

    Article  CAS  Google Scholar 

  71. J. Osorio-Guillen, S. Lany, S.V. Barabash, A. Zunger, Magnetism without magnetic ions: percolation, exchange, and formation energies of magnetism-promoting intrinsic defects in CaO. Phys. Rev. Lett. 96, 1–4 (2006). https://doi.org/10.1103/PhysRevLett.96.107203

    Article  CAS  Google Scholar 

  72. G. Bouzerar, T. Ziman, Model for vacancy-induced d0 ferromagnetism in oxide compounds. Phys. Rev. Lett. 96, 1–4 (2006). https://doi.org/10.1103/PhysRevLett.96.207602

    Article  CAS  Google Scholar 

  73. S. Ullah Awan, S.K. Hasanain, M.F. Bertino, G. Hassnain Jaffari, Ferromagnetism in Li doped ZnO nanoparticles: the role of interstitial Li. J. Appl. Phys. (2012). https://doi.org/10.1063/1.4767364

    Article  Google Scholar 

  74. N. Rajamanickam, R.N. Mariammal, S. Rajashabala, K. Ramachandran, Effect of (Li, Mn) co-doping on structural, optical and magnetic properties of chunk-shaped nano ZnO. J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.06.081

    Article  Google Scholar 

  75. X. Guan, N. Cai, C. Yang, J. Chen, P. Lu, Magnetic properties of ZnO nanowires with Li dopants and Zn vacancies. Thin Solid Films 605, 273–276 (2016). https://doi.org/10.1016/j.tsf.2015.04.077

    Article  CAS  Google Scholar 

  76. R. Vettumperumal, S. Kalyanaraman, B. Santoshkumar, R. Thangavel, Magnetic properties of high Li doped ZnO sol–gel thin films. Mater. Res. Bull. 50, 7–11 (2014). https://doi.org/10.1016/j.materresbull.2013.10.015

    Article  CAS  Google Scholar 

  77. S. Ghosh, G.G. Khan, K. Mandal, S. Thapa, P.M.G. Nambissan, Positron annihilation studies of vacancy-type defects and room temperature ferromagnetism in chemically synthesized Li-doped ZnO nanocrystals. J. Alloys Compd. 590, 396–405 (2014). https://doi.org/10.1016/j.jallcom.2013.12.149

    Article  CAS  Google Scholar 

  78. N. Sharma, A. Gaur, V. Kumar, R.K. Kotnala, Multiferroicity and magnetoelectric coupling in doped ZnO. Superlattices Microstruct. 65, 299–308 (2014). https://doi.org/10.1016/j.spmi.2013.11.015

    Article  CAS  Google Scholar 

  79. R. Krithiga, S. Sankar, G. Subhashree, Room temperature diluted magnetism in Li, Na and K co-doped ZnO synthesized by solution combustion method. Superlattices Microstruct. 75, 621–633 (2014). https://doi.org/10.1016/j.spmi.2014.08.018

    Article  CAS  Google Scholar 

  80. S.Y. Zhuo, X.C. Liu, Z. Xiong, J.H. Yang, E.W. Shi, Ionized zinc vacancy mediated ferromagnetism in copper doped ZnO thin films. AIP Adv. (2012). https://doi.org/10.1063/1.3698314

    Article  Google Scholar 

  81. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005). https://doi.org/10.1038/nmat1310

    Article  CAS  PubMed  Google Scholar 

  82. G. McCabe, T. Fries, M. Liu, Y. Shapira, L. Ram-Mohan, R. Kershaw, A. Wold, C. Fau, M. Averous, E. McNiff, Bound magnetic polarons in p-type Cu2Mn0.9Zn0.1SnS4. Phys. Rev. B 56, 6673–6680 (1997). https://doi.org/10.1103/PhysRevB.56.6673

    Article  CAS  Google Scholar 

  83. C.J. Raj, K. Prabakar, S.N. Karthick, K.V. Hemalatha, M.K. Son, H.J. Kim, Banyan root structured Mg-doped Zno photoanode dye-sensitized solar cells. J. Phys. Chem. C. 117, 2600–2607 (2013). https://doi.org/10.1021/jp308847g

    Article  CAS  Google Scholar 

  84. G. Wang, S. Hou, C. Yan, W. Zhang, A 3D architecture composite of porous vanadium nitride nanoribbons and reduced graphene oxide as a high-efficiency counter electrode for dye-sensitized solar cells. RSC Adv. 8, 1083–1088 (2018). https://doi.org/10.1039/c7ra11279c

    Article  CAS  Google Scholar 

  85. E. Ramasamy, C. Jo, A. Anthonysamy, I. Jeong, J.K. Kim, J. Lee, Soft-template simple synthesis of ordered mesoporous titanium nitride-carbon nanocomposite for high performance dye-sensitized solar cell counter electrodes. Chem. Mater. 24, 1575–1582 (2012). https://doi.org/10.1021/cm203672g

    Article  CAS  Google Scholar 

  86. R. Bhattacharjee, I.M. Hung, Effect of different concentration Li-doping on the morphology, defect and photovoltaic performance of Li–ZnO nanofibers in the dye-sensitized solar cells. Mater. Chem. Phys. 143, 693–701 (2014). https://doi.org/10.1016/j.matchemphys.2013.09.055

    Article  CAS  Google Scholar 

  87. R. Ruess, S. Scarabino, A. Ringleb, K. Nonomura, N. Vlachopoulos, A. Hagfeldt, G. Wittstock, D. Schlettwein, Diverging surface reactions at TiO2-or ZnO-based photoanodes in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 21, 13047–13057 (2019). https://doi.org/10.1039/c9cp01215j

    Article  CAS  PubMed  Google Scholar 

  88. V.F. Nunes, A.P.S. Souza, F. Lima, G. Oliveira, F.N. Freire, A.F. Almeida, Effects of potential deposition on the parameters of ZnO dye-sensitized solar cells. Mater. Res. 21, e20170990 (2018). https://doi.org/10.1590/1980-5373-MR-2017-0990

    Article  Google Scholar 

  89. J. Cheng, J. Ma, Y. Ma, C. Zhou, Y. Qiang, X. Zhou, J. Yang, H. Shi, Y. Xie, Highly efficient ZnO-based dye-sensitized solar cells with low-cost Co-Ni/carbon aerogel composites as counter electrodes. New J. Chem. 42, 16329–16334 (2018). https://doi.org/10.1039/C8NJ03376E

    Article  CAS  Google Scholar 

  90. J. Chang, R. Ahmed, H. Wang, H. Liu, R. Li, P. Wang, E.R. Waclawik, ZnO nanocones with high-index 101̄1 facets for enhanced energy conversion efficiency of dye-sensitized solar cells. J. Phys. Chem. C. 117, 13836–13844 (2013). https://doi.org/10.1021/jp402742n

    Article  CAS  Google Scholar 

  91. C.P. Lee, C.Y. Chou, C.Y. Chen, M.H. Yeh, L.Y. Lin, R. Vittal, C.G. Wu, K.C. Ho, Zinc oxide-based dye-sensitized solar cells with a ruthenium dye containing an alkyl bithiophene group. J. Power Sources. 246, 1–9 (2014). https://doi.org/10.1016/j.jpowsour.2013.05.101

    Article  CAS  Google Scholar 

  92. F.I. Lizama-Tzec, R. García-Rodríguez, G. Rodríguez-Gattorno, E.J. Canto-Aguilar, A.G. Vega-Poot, B.E. Heredia-Cervera, J. Villanueva-Cab, N. Morales-Flores, U. Pal, G. Oskam, Influence of morphology on the performance of ZnO-based dye-sensitized solar cells. RSC Adv. 6, 37424–37433 (2016). https://doi.org/10.1039/c5ra25618f

    Article  CAS  Google Scholar 

  93. E. Guillén, J. Idígoras, T. Berger, J.A. Anta, C. Fernández-Lorenzo, R. Alcántara, J. Navas, J. Martín-Calleja, ZnO-based dye solar cell with pure ionic-liquid electrolyte and organic sensitizer: the relevance of the dye-oxide interaction in an ionic-liquid medium. Phys. Chem. Chem. Phys. 13, 207–213 (2011). https://doi.org/10.1039/c0cp00507j

    Article  CAS  PubMed  Google Scholar 

  94. Y. Yang, W. Guo, Y. Zhang, Y. Ding, X. Wang, Z.L. Wang, Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells. Nano Lett. 11, 4812–4817 (2011). https://doi.org/10.1021/nl202648p

    Article  CAS  PubMed  Google Scholar 

  95. C. Wang, W. Wang, H. Fan, N. Zhao, J. Ma, M. Zhang, A.K. Yadav, A codoped polymeric photocatalyst with prolonged carrier lifetime and extended spectral response up to 600 nm for enhanced hydrogen evolution. ACS Appl. Mater. Interfaces. 12, 5234–5243 (2020). https://doi.org/10.1021/acsami.9b16646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank DST-SAIF, KOCHI for providing TEM facility. The author I. John Peter thank Department of Science and Technology, India for the financial support under DST-INSPIRE fellowship scheme (Code: IF160974).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jayakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveen, E., Peter, I.J., Kumar, A.M. et al. Boosting of Power Conversion Efficiency of 2D ZnO Nanostructures-Based DSSC by the Lorentz Force with Chitosan Polymer Electrolyte. J Inorg Organomet Polym 30, 4927–4943 (2020). https://doi.org/10.1007/s10904-020-01629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01629-z

Keywords

Navigation