Advertisement

Electrospun Fibrous PTFE Supported ZnO for Oil–Water Separation

  • Minjia Li
  • Feng Chen
  • Chengbao Liu
  • Junchao Qian
  • Zhengying Wu
  • Zhigang ChenEmail author
Article
  • 11 Downloads

Abstract

Polytetrafluoroethylene (PTFE)/polyvinyl alcohol (PVA)/ZnO composite fiber membranes were prepared by electrospinning, and PTFE/ZnO composite films were obtained after removing PVA. Considering that the spinning solution has good spinning performance, the PTFE/ZnO composite film has good flexibility and durability. The zinc oxide powder is evenly fixed on the surface of PTFE fibers, so that the film’s flexibility will not be affected during high-temperature calcination. The scanning electron micrograph shows that the morphology of the film is similar to the surface of the lotus leaf. The properties of PTFE/ZnO composite films were investigated by hydrophobic angle test and oil–water separation experiments. Results show that the PTFE/ZnO composite film has good hydrophobicity and oil–water separation performance. With the decrease in ZnO, the contact angle of the PTFE/ZnO composite film increased, and the oil–water separation performance improved. When the amount of ZnO added was 0.025 g, the contact angle was 160.9°, and the oil–water separation performance was the best.

Keywords

Electrospinning PTFE/ZnO fibrous membrane Hydrophobic Oil–water separation 

Notes

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (21505097); Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment; Science and Technology Development Project of Suzhou (SYG201742), Science and technology development plan of Xiangcheng District-special science and technology for people’s livelihood (201708).

References

  1. 1.
    A. Pala, E. Tokat, Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Water Res. 36(11), 2920–2925 (2002)CrossRefGoogle Scholar
  2. 2.
    S.D. Richardson, T.A. Ternes, Water analysis: emerging contaminants and current issues. Anal. Chem. 83(12), 4614–4648 (2011)CrossRefGoogle Scholar
  3. 3.
    J. Li, D. Li, Y. Yang et al., A prewetting induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation. Green Chem. 18(2), 541–549 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Asatekin, A.M. Mayes, Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copolymers. Environ. Sci. Technol. 43(12), 4487–4492 (2009)CrossRefGoogle Scholar
  5. 5.
    Z.X. Wang, C.H. Lau, N.Q. Zhang et al., Mussel-inspired tailoring of membrane wettability for harsh water treatment. J. Mater. Chem. A 3(6), 2650–2657 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Sabir, Approach of cost-effective adsorbents for oil removal from oily water. Crit. Rev. Environ. Sci. Technol. 45(17), 1916–1945 (2015)CrossRefGoogle Scholar
  7. 7.
    Z. Chu, Y. Feng, S. Seeger, Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 54(8), 2328–2338 (2015)CrossRefGoogle Scholar
  8. 8.
    W.T. Cao, Y.J. Liu, M.G. Ma et al., Facile preparation of robust and superhydrophobic materials for self-cleaning and oil/water separation. Colloids Surf. A 529, 18–25 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Liu, S. Wang, L. Jiang, Nature-inspired superwettability systems. Nat. Rev. Mater. 2(7), 17036 (2017)CrossRefGoogle Scholar
  10. 10.
    B. Wang, W. Liang, Z. Guo et al., Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem. Soc. Rev. 44(1), 336–361 (2015)CrossRefGoogle Scholar
  11. 11.
    Z. Xue, S. Wang, L. Lin et al., A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater. 23(37), 4270–4273 (2011)CrossRefGoogle Scholar
  12. 12.
    Z. Xue, Y. Cao, N. Liu et al., Special wettable materials for oil/water separation. J. Mater. Chem. A 2(8), 2445–2460 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Huang, C. Xiao, Q. Huang et al., Robust preparation of tubular PTFE/FEP ultrafine fibers-covered porous membrane by electrospinning for continuous highly effective oil/water separation. J. Membr. Sci. 568, 87–96 (2018)CrossRefGoogle Scholar
  14. 14.
    D. Zou, M. Qiu, X. Chen et al., One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment. Sep. Purif. Technol. 210, 511–520 (2019)CrossRefGoogle Scholar
  15. 15.
    D. Ding, H. Mao, X. Chen et al., Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions. J. Membr. Sci. 565, 303–310 (2018)CrossRefGoogle Scholar
  16. 16.
    J. Hong, Y. He, Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning. Desalination 332(1), 67–75 (2014)CrossRefGoogle Scholar
  17. 17.
    V.A. Ganesh, H.K. Raut, A.S. Nair et al., A review on self-cleaning coatings. J. Mater. Chem. 21(41), 16304–16322 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Laohaprapanon, A.D. Vanderlipe, B.T. Doma Jr. et al., Self-cleaning and antifouling properties of plasma-grafted poly (vinylidene fluoride) membrane coated with ZnO for water treatment. J. Taiwan Inst. Chem. Eng. 70, 15–22 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Shen, Y. Wu, L. Fu et al., Preparation of doped TiO2 nanofiber membranes through electrospinning and their application for photocatalytic degradation of malachite green. J. Mater. Sci. 49(5), 2303–2314 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Haider, S. Haider, I.K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11(8), 1165–1188 (2018)CrossRefGoogle Scholar
  21. 21.
    F.E. Ahmed, B.S. Lalia, R. Hashaikeh, A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356, 15–30 (2015)CrossRefGoogle Scholar
  22. 22.
    M.J. Park, R.R. Gonzales, A. Abdel-Wahab et al., Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane. Desalination 426, 50–59 (2018)CrossRefGoogle Scholar
  23. 23.
    J.K.Y. Lee, N. Chen, S. Peng et al., Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog. Polym. Sci. 2018Google Scholar
  24. 24.
    Q.L. Huang, Y. Huang, C.F. Xiao et al., Electrospun ultrafine fibrous PTFE-supported ZnO porous membrane with self-cleaning function for vacuum membrane distillation. J. Membr. Sci. 534, 73–82 (2017)CrossRefGoogle Scholar
  25. 25.
    Y. Huang, Q. Huang, C. Xiao et al. Supported electrospun ultrafine fibrous poly (tetrafluoroethylene)/ZnO porous membranes and their photocatalytic applications. Chem. Eng. Technol. 41(3), 656–662 (2018)CrossRefGoogle Scholar
  26. 26.
    W.M. Kang, H.H. Zhao, J.G. Ju et al., Electrospun Poly(tetrafluoroethylene) nanofiber membranes from PTFE-PVA-BA-H2O gel-spinning solutions. Fibers Polym. 17, 1403–1413 (2016)CrossRefGoogle Scholar
  27. 27.
    P. Zhao, N. Soin, K. Prashanthi et al., Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high-performance triboelectric nanogenerators. ACS Appl. Mater. Interfaces 10(6), 5880–5891 (2018)CrossRefGoogle Scholar
  28. 28.
    Z. Jahan, M.B.K. Niazi, ØW. Gregersen, Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. J. Ind. Eng. Chem. 57, 113–124 (2018)CrossRefGoogle Scholar
  29. 29.
    Y. Huang, Q.L. Huang, H. Liu et al., Preparation, characterization, and applications of electrospun ultrafine fibrous PTFE porous membranes. J. Membr. Sci. 523, 317–326 (2017)CrossRefGoogle Scholar
  30. 30.
    R. Chen, Y. Wan, W. Wu et al., A lotus effect-inspired flexible and breathable membrane with hierarchical electrospinning micro/nanofibers and ZnO nanowires. Mater. Des. 162, 246–248 (2019)CrossRefGoogle Scholar
  31. 31.
    H. Bai, L. Zhang, D. Gu, Micrometer-sized spherulites as building blocks for lotus leaf-like superhydrophobic coatings. Appl. Surf. Sci. 459, 54–62 (2018)CrossRefGoogle Scholar
  32. 32.
    C.H. Xue, X.J. Guo, J.Z. Ma et al., Fabrication of robust and antifouling superhydrophobic surfaces via surface-initiated atom transfer radical polymerization. ACS Appl. Mater. Interfaces 7(15), 8251–8259 (2015)CrossRefGoogle Scholar
  33. 33.
    L. Yan, Q. Li, H. Chi et al., One-pot synthesis of acrylate resin and ZnO nanowires composite for enhancing oil absorption capacity and oil-water separation. Adv. Compos. Hybrid Mater. 1(3), 567–576 (2018)CrossRefGoogle Scholar
  34. 34.
    A. Rajaa, S. Ashokkumar, R.P. Marthandamc et al., Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J. Photochemis. Photobiol. B 181, 53–58 (2018)CrossRefGoogle Scholar
  35. 35.
    J. Hao, C. Liu, Y. Li et al., Preparation nano-structure polytetrafluoroethylene (PTFE) Functional film on the cellulose insulation polymer and its effect on the breakdown voltage and hydrophobicity properties. Materials 11.5, 851 (2018)CrossRefGoogle Scholar
  36. 36.
    M. Pirhashemi, A. Habibi-Yangjeh, Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. J. Colloid Interface Sci. 491, 216–229 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Nejati-Moghadam, A. Esmaeili Bafghi-Karimabad, M. Salavati-Niasari et al., Synthesis and characterization of SnO2 nanostructures prepared by a facile precipitation method. J. Nanostruct. 5(1), 47–53 (2015)Google Scholar
  38. 38.
    Y. Guo, L. Kang, M. Zhu et al., A strategy toward air-stable and high-performance ZnO-based perovskite solar cells fabricated under ambient conditions. Chem. Eng. J. 336, 732–740 (2018)CrossRefGoogle Scholar
  39. 39.
    K.L. Harris, A.A. Pitenis, W.G. Sawyer et al., PTFE tribology and the role of mechanochemistry in the development of protective surface films. Macromolecules 48(11), 3739–3745 (2015)CrossRefGoogle Scholar
  40. 40.
    X. Yu, P. Yang, M.G. Moloney et al., Electrospun gelatin membrane cross-linked by a bis (diarylcarbene) for oil/water separation: a new strategy to prepare porous organic polymers. ACS Omega 3(4), 3928–3935 (2018)CrossRefGoogle Scholar
  41. 41.
    N.P. Khumalo, L.N. Nthunya, E. Canck, De et al., Congo red dye removal by direct membrane distillation using PVDF/PTFE membrane. Sep. Purif. Technol. 211, 578–586 (2019)CrossRefGoogle Scholar
  42. 42.
    X. Gu, C. Tong, C. Lai et al., A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. J. Mater. Chem. A 3(32), 16670–16678 (2015)CrossRefGoogle Scholar
  43. 43.
    H. Tang, L. Hao, J. Chen et al., Surface modification to fabricate superhydrophobic and superoleophilic alumina membranes for oil/water separation. Energy Fuels 32(3), 3627–3636 (2018)CrossRefGoogle Scholar
  44. 44.
    H. Ke, E. Feldman, P. Guzman et al., Electrospun polystyrene nanofibrous membranes for direct contact membrane distillation. J. Membr. Sci. 515, 86–97 (2016)CrossRefGoogle Scholar
  45. 45.
    S.S. Latthe, C. Terashima, K. Nakata et al., Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 19(4), 4256–4283 (2014)CrossRefGoogle Scholar
  46. 46.
    P. Liu, Y. Gao, F. Wang et al., Superhydrophobic and self-cleaning behavior of Portland cement with lotus-leaf-like microstructure. J. Clean. Prod. 156, 775–785 (2017)CrossRefGoogle Scholar
  47. 47.
    S. Dai, Y. Zhu, Y. Gu et al., Biomimetic fabrication and photoelectric properties of superhydrophobic ZnO nanostructures on flexible PDMS substrates replicated from rose petal. Appl. Phys. A 125(2), 138 (2019)CrossRefGoogle Scholar
  48. 48.
    J.J. Li, Y.N. Zhou, Z.H. Luo, Smart fiber membrane for pH-induced oil/water separation. ACS Appl. Mater. Interfaces 7(35), 19643–19650 (2015)CrossRefGoogle Scholar
  49. 49.
    R.H. Kollarigowda, S. Abraham, C.D. Montemagno, Antifouling cellulose hybrid biomembrane for effective oil/water separation. ACS Appl. Mater. Interfaces 9(35), 29812–29819 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Environment Functional MaterialsSuzhou University of Science and TechnologySuzhouChina
  2. 2.School of Chemistry, Biology and Materials EngineeringSuzhou University of Science and TechnologySuzhouChina

Personalised recommendations