Skip to main content
Log in

Activation Energy of Light Induced Isomerization of Resveratrol

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Isomerization of trans-stilbenes is known to be induced by light. The two isomers have distinct absorption, fluorescence excitation and emission spectra. Resveratrol, 3,4′,5-trihydroxystilbene, is a member of the stilbene family. The interest of the scientific community in resveratrol has increased over the last years due to its biomedical properties. Whereas there is a growing confidence that trans-resveratrol is non-toxic, very little is known about the pharmacology of cis-resveratrol. Of this very reason there is considerable interest in knowing the energetics of the trans-cis conversion. Cis-resveratrol is characterized by a large fluorescence quantum yield when compared to trans-resveratrol. In the present paper we report a detailed analysis of the spectral changes induced in trans-resveratrol upon 260 nm excitation for different time periods. Spectral changes have been monitored with UV-visible absorption and steady-state fluorescence spectroscopy at pH 4 at 20, 25, 30, 35, 40, 45 and 50 °C. Continuous 260 nm excitation induces a blue shift in the absorption and fluorescence excitation spectra of resveratrol and a 14 nm blue shift in its fluorescence emission. The photoisomerization yield is reported as a function of 260 nm excitation time. 330 min continuous excitation led to ~60% isomerization yield. The kinetics of trans-cis isomerization has been monitored following the increase in fluorescence quantum yield upon continuous 260 nm excitation of trans-resveratrol. The study was carried out at the above mentioned temperatures in order to obtain the Arrhenius activation energy of photoisomerization. Activation energy and pre-exponential factor were 3.7 ± 0.3 kcal.mol−1 and 10.6 ± 1.6 s−1, respectively. The activation energy is comparable with previously reported values for the photoisomerization of other stilbenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1011

    Article  PubMed  CAS  Google Scholar 

  2. Infante R (1997) Polifenoles del vino y oxidabilidad de las lipoproteí-nas. ¿Blanco o tinto? Clin Investig Arterioscler 9:19–22

    Google Scholar 

  3. Kopp P (1998) Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’? Eur J Endocrinol 138:619–620

    Article  PubMed  CAS  Google Scholar 

  4. Yilmaz Y, Toledo RT (2004) Major flavonoids in grape seeds and skins: antioxidant capacity of catechin epicatechin, and gallic acid. J Agric Food Chem 52:255–260

    Article  PubMed  CAS  Google Scholar 

  5. King R, J. Bomser, and D. Min, (2006) Bioactivity of Resveratrol - Review, Food Science and Food Safety, 5.

  6. Díaz TG, Merás ID, Rodríguez DA (2007) Determination of resveratrol in wine by photochemically induced second-derivative fluorescence coupled with liquid–liquid extraction. Anal Bioanal Chem 387:1999–2007

    Article  Google Scholar 

  7. Gülçin İ (2010) Antioxidant properties of resveratrol: a structure–activity insight. Innovative Food Sci Emerg Technol 11:210–218

    Article  Google Scholar 

  8. Goldberg DM, Ng E, Karumanchiri A, Yan J, Diamandis EP, Soleas GJ (1995) Assay of resveratrol glucosides and isomers in wine by direct-injection high-performance liquid-chromatography. Journ Chromatog A 708(1):89–98

    Article  CAS  Google Scholar 

  9. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong H, Farnsworth NR, Kinghorn AD, Metha RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    Article  PubMed  CAS  Google Scholar 

  10. Chung MI, Teng CM, Cheng KL, Ko FN, Lin CN (1992) An antiplatelet principle of veratrum-formosanum. Planta Med 58(3):274–276

    Article  PubMed  CAS  Google Scholar 

  11. Kimura Y, Okuda H, Arichi S (1985) Effects of stilbenes on arachidonate metabolism in leukocytes. Biochim Biohys 834:275–278

    CAS  Google Scholar 

  12. Pace-Asciak CR, Hahn S, Diamandis EP, Soleas G, Goldberg DM (1995) The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: Implications for protection against coronary heart disease. Clin Chim Acta 235:207–219

    Article  PubMed  CAS  Google Scholar 

  13. Bertelli AA, Giovannini L, Giannessi D, Migliori M, Bernini W, Fregoni M, Bertelli A (1995) Antiplatelet activity of synthetic and natural resveratrol in red wine. Int J Tissue React 17:1–3

    PubMed  CAS  Google Scholar 

  14. Frankel EN, Waterhouse AL, Kinsella JE (1993) Inhibition of human ldl oxidation by resveratrol. Lancet 341:1103–1104

    Article  PubMed  CAS  Google Scholar 

  15. Kimura Y, Ohminami H, Okuda H, Baba K, Kozawa K, Arichi S (1983) Effects of stilbene components of roots of polygonum ssp. on liver injury in peroxidized oil-fed rats. Planta Med 49:51–54

    Article  CAS  Google Scholar 

  16. Frémont L (2000) Biological effects of resveratrol. Life Sci 66(8):663–673

    Article  PubMed  Google Scholar 

  17. M.G. Sajilata, R. S. Singhal and P. R. Kulkarni (2006) Resistant Starch – a review, comprehensive reviews in food science and food safety, 5

  18. Bertelli A, Das DK (2009) Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol 54(6):468–476

    Article  PubMed  CAS  Google Scholar 

  19. Lekli I, Ray D, Das DK (2010) Longevity nutrients resveratrol, wines and grapes. Genes Nutr 5:55–60

    Article  PubMed  CAS  Google Scholar 

  20. Wenzel E, Somoza V (2005) Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 49:472–481

    Article  PubMed  CAS  Google Scholar 

  21. Kavas GÖ, Aribal-Kocatürk P, Büyükkağnici DI (2007) Resveratrol: is there any effect on healthy subject? Biol Trace Elem Res 118:250–254

    Article  PubMed  CAS  Google Scholar 

  22. Orallo F (2006) Comparative studies of the antioxidant effects of cis- and trans- resveratrol. Curr Med Chem 13(1):87–98

    Article  PubMed  CAS  Google Scholar 

  23. Campos-Toimil M, Elies J, Alvarez E, Verde I, Orallo F (2007) Effects of trans- and cis-resveratrol on Ca2+ handling in A7r5 vascular myocytes. Eur J Pharmacol 577:91–99

    Article  PubMed  CAS  Google Scholar 

  24. Yáñez M, Fraiz N, Cano E, Orallo F (2006) Inhibitory effects of cis- and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem Biophys Res Commun 344(2):688–695

    Article  PubMed  Google Scholar 

  25. Basly JP, Marre-Fournier F, Le Bail JC, Habrioux G, Chulia AJ (2000) Estrogenic/antiestrogenic and scavenging properties of (E)- and (Z)-resveratrol. Life Sci 66(9):769–777

    Article  PubMed  CAS  Google Scholar 

  26. Bertelli AA, Giovannini L, Bernini W, Migliori M, Fregoni M, Bavaresco L et al (1996) Antiplatelet activity of cis-resveratrol. Drugs Exp Clin Res 22(2):61–63

    PubMed  CAS  Google Scholar 

  27. Leiro J, Alvarez E, Arranz JA, Laguna R, Uriarte E, Orallo F (2004) Effects of cis-resveratrol on inflammatory murine macrophages: antioxidant activity and down-regulation of inflammatory genes. J Leukoc Biol 75:1156–1165

    Article  PubMed  CAS  Google Scholar 

  28. Chen X, He H, Wang G, Yang B, Ren W, Ma L, Yu Q (2007) Stereospecific determination of cis- and trans-resveratrol in rat plasma by HPLC: application to pharmacokinetic studies. Biomed Chromatogr 21:257–265

    Article  PubMed  CAS  Google Scholar 

  29. Blache D, Rustan I, Durand P, Lesgards G, Loreau N (1997) Gas chromatographic analysis of resveratrol in plasma, lipoproteins and cells after in vitro incubations. J Chromatogr B Biomed Sci Appl 702:103–110

    Article  PubMed  CAS  Google Scholar 

  30. Jeandet P, Bessis R, Maume BF, Meunier P, Peyron D, Trollat P (1995) Effect of enological practices on the resveratrol isomer content of wine. J Agric Food Chem 43:316–319

    Article  CAS  Google Scholar 

  31. Trela BC, Waterhouse AL (1996) Resveratrol: isomeric molar absorptivities and stability. J Agric Food Chem 44(5):1253–1257

    Article  CAS  Google Scholar 

  32. Goldberg DM, Karumanchiri A, Ng E, Yan J, Diamandis EP, Soleas GJ (1995) Direct gas chromatographic-mass spectrometric method to assay cis-resveratrol in wines: preliminary survey of its concentration in commercial wines. J Agric Food Chem 43:1245–1250

    Article  CAS  Google Scholar 

  33. Lu Z, Chen R, Liu H, Hu Y, Cheng B, Zou G (2009) Study of the complexation of resveratrol with cyclodextrins by spectroscopy and molecular modeling. J Incl Phenom Macrocycl Chem 63:295–300

    Article  CAS  Google Scholar 

  34. Dugave C, Demage L (2003) Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem Rev 103:2475–2532

    Article  PubMed  CAS  Google Scholar 

  35. Polyakov N, T. Leshina and L. Kispert, (2002) Electron transfer mediated geometrical cis-trans isomerization of polyenes. Riken Review 44.

  36. Wiemers KL, Kauffman JF (2001) Excited state isomerization kinetics of 4-(Methanol) stilbene: application of the isodielectric kramers-hubbard analysis. J Phys Chem A 105:823–828

    Article  CAS  Google Scholar 

  37. Görner H, Schulte-Frohlinde D (1982) Study of the trans → cis photoisomerization of 4-nitro-4′- dimethylaminostilbene in toluene solutions. Journ Molec Struct 8:227–236

    Article  Google Scholar 

  38. Steiner U, Abdel-Kader MH, Fischer P, Krameria HEA (1978) Photochemical cis/trans isomerization of a stilbazolium betaine. a rotolytic/photochemical reaction cycle. Journ of the American Chemic Society 100(10):3190–3197

    Article  CAS  Google Scholar 

  39. Deak M, Falk H (2003) On the chemistry of the resveratrol diastereomers. Monatsh Chem 134:883–888

    CAS  Google Scholar 

  40. Camont L, Cottart C-H, Rhayem Y, Nivet-Antoine V, Djelidi R, Collin F, Beaudeux J-L, Bonnefont-Rousselot D (2009) Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions. Anal Chim Acta 634:121–128

    Article  PubMed  CAS  Google Scholar 

  41. López-Nicolás JM, García-Carmona F (2008) Aggregation state and pKa values of (E)-resveratrol as determined by fluorescence spectroscopy and UV-visible absorption. J Agric Food Chem 56:7600–7605

    Article  PubMed  Google Scholar 

  42. Liang L, Tajmir-Riahi HA, Subirade M (2008) Interaction of β- lactoglobulin with resveratrol and its biological implications. Biomacromolecules 9:50–56

    Article  PubMed  CAS  Google Scholar 

  43. Lin CH, Chen YH (2001) On-line identification of trans- and cis-resveratrol by nonaqueous capillary electrophoresis/fluorescence spectroscopy at 77 K. Electrophoresis 22:2574–2579

    Article  PubMed  CAS  Google Scholar 

  44. Fischer G, Seger G, Muszkat KA, Fischer E (1975) Emissions of sterically hindered stilbene derivatives and related compounds. Part IV. Large conformational differences between ground and excited states of sterically hindered stilbenes: implications regarding stokes shifts and viscosity or temperature dependence of fluorescence yields. J Chem Soc Perkin Trans 2:1569–1576

    Google Scholar 

  45. Sumitani M, Yoshihara K (1982) Direct observation of the rate for cis-trans and trans-cis photoisomerization of stilbene with picosecond laser photolysis. Bull Chem Soc Jpn 55:85–89

    Article  CAS  Google Scholar 

  46. Courtney SH, Fleming GR (1985) Photoisomerization of stilbene in low viscosity solvents: comparison of isolated and solvated molecules. J Chem Phys 83:215–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Neves-Petersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiras, T.S., Neves-Petersen, M.T. & Petersen, S.B. Activation Energy of Light Induced Isomerization of Resveratrol. J Fluoresc 21, 1897–1906 (2011). https://doi.org/10.1007/s10895-011-0886-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0886-3

Keywords

Navigation