Journal of Chemical Ecology

, Volume 36, Issue 1, pp 80–100 | Cite as

Sex Pheromones and Their Impact on Pest Management

Review Article

Abstract

The idea of using species-specific behavior-modifying chemicals for the management of noxious insects in agriculture, horticulture, forestry, stored products, and for insect vectors of diseases has been a driving ambition through five decades of pheromone research. Hundreds of pheromones and other semiochemicals have been discovered that are used to monitor the presence and abundance of insects and to protect plants and animals against insects. The estimated annual production of lures for monitoring and mass trapping is on the order of tens of millions, covering at least 10 million hectares. Insect populations are controlled by air permeation and attract-and-kill techniques on at least 1 million hectares. Here, we review the most important and widespread practical applications. Pheromones are increasingly efficient at low population densities, they do not adversely affect natural enemies, and they can, therefore, bring about a long-term reduction in insect populations that cannot be accomplished with conventional insecticides. A changing climate with higher growing season temperatures and altered rainfall patterns makes control of native and invasive insects an increasingly urgent challenge. Intensified insecticide use will not provide a solution, but pheromones and other semiochemicals instead can be implemented for sustainable area-wide management and will thus improve food security for a growing population. Given the scale of the challenges we face to mitigate the impacts of climate change, the time is right to intensify goal-oriented interdisciplinary research on semiochemicals, involving chemists, entomologists, and plant protection experts, in order to provide the urgently needed, and cost-effective technical solutions for sustainable insect management worldwide.

Keywords

Sex pheromone Attraction Monitoring Attracticide Mating disruption Insect control Integrated pest management Food security 

Notes

Acknowledgements

We thank several colleagues for input and three reviewers for their constructive criticism. This work was supported by the Linnaeus initiative “Insect Chemical Ecology, Ethology and Evolution” IC-E3 (Formas, SLU).

References

  1. Agnello, A. M., Reissig, W. H., Kovach, J., and Nyrop, J. P. 2003. Integrated apple pest management in New York State using predatory mites and selective pesticides. Agric. Ecosyst. Env. 94:183–195.CrossRefGoogle Scholar
  2. Albert, R. and Wolff, R. 2000. Pest control methods for the private garden. J. Pest. Sc. 73:79–82.Google Scholar
  3. Andersson, M. N., Haftmann, J., Stuart, J. J., Cambron, S. E., Harris, M. O., Foster, S. P., Franke, S., Francke, W., and Hillbur, Y. 2009. Identification of sex pheromone components of the Hessian fly, Mayetiola destructor. J. Chem. Ecol. 35:81–95.PubMedCrossRefGoogle Scholar
  4. Arn, H. 1990. Pheromones: prophecies, economics, and the ground swell, pp. 717–722, in R. L. Ridgway, R. M. Silverstein, M. N. Inscoe (eds.). Behavior-modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.Google Scholar
  5. Arn, H. and Louis, F. 1996. Mating disruption in European vineyards, pp. 377–382, in R.T. Cardé and A.K. Minks (eds.). Pheromone research—new directions. Chapman and Hall, New York.Google Scholar
  6. Arn, H., Städler, E., and Rauscher, S. 1975. The electroantennographic detector—a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Z. Naturforsch. 30c:722–725.Google Scholar
  7. Arn, H., Rauscher, S., Buser, H.-R., and Guerin, P. M. 1986. Sex pheromone of Eupoecilia ambiguella female: analysis and male response to ternary blend. J. Chem. Ecol. 12:1417–1429.CrossRefGoogle Scholar
  8. Arn, H., Tóth, M., and Priesner, E. 1992. List of sex pheromones of Lepidoptera and related attractants. International Organization for Biological Control. Montfavet, France. www.nysaes.cornell.edu/pheronet/
  9. Arn, H., Brauchli, J., Koch, U. T., Pop, L., and Rauscher, S. 1997. The need for standards in pheromone technology. IOBC wprs Bulletin 20:27–34.Google Scholar
  10. Baker, T. C. and Heath, J. J. 2004. Pheromones—function and use in insect control, pp. 407–460, in L. I. Gilbert, K. Iatro, S. S. Gill (eds.). Molecular insect science (Vol. 6). Elsevier.Google Scholar
  11. Bakke, A. 1982. Mass trapping of the spruce bark beetle Ips typographus in Norway as part of an integrated control program, pp. 17–25, in A. F. Kydonieus and M. Beroza (eds.). Insect Suppression with Controlled Release Pheromone Systems. Vol. II. CRC Press, Boca Raton, FL.Google Scholar
  12. Bartell, R. J. 1982. Mechanisms of communication disruption by pheromone in the control of Lepidoptera: a review. Physiol. Entomol. 7:353–364.CrossRefGoogle Scholar
  13. Battisti, D. S. and Naylor, R. L. 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244.PubMedCrossRefGoogle Scholar
  14. Beers, E. H., Brunner, J. F., Dunley, J. E., Doerr, M., and Granger, K. 2005. Role of neonicotinyl insecticides in Washington apple integrated pest management. Part II. Nontarget effects on integrated mite control. J. Insect Sci. 5:16.PubMedGoogle Scholar
  15. Bengtsson, M., Karg, G., Kirsch, P. A., Löfqvist, J., Sauer, A., and Witzgall, P. 1994. Mating disruption of pea moth Cydia nigricana F. (Lepidoptera: Tortricidae) by a repellent blend of sex pheromone and attraction inhibitors. J. Chem. Ecol. 20:871–887.CrossRefGoogle Scholar
  16. Bengtsson, M., Jaastad, G., Knudsen, G., Kobro, S., Bäckman, A.-C., Pettersson, E., and Witzgall, P. 2006. Plant volatiles mediate attraction to host and non-host plant in apple fruit moth, Argyresthia conjugella. Entomol. Exp. Appl. 118:77–85.CrossRefGoogle Scholar
  17. Benton, R., Vannice, K. S., and Vosshall, L. B. 2007. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:289–293.PubMedCrossRefGoogle Scholar
  18. Bergström, L. G. W. 2008. Chemical communication by behaviour-guiding olfactory signals. Chem. Comm. 34:3959–3979.PubMedGoogle Scholar
  19. Blumberg, D. 2008. Date palm arthropod pests and their management in Israel. Phytoparasitica 36:411–448.CrossRefGoogle Scholar
  20. Borden, J. H. 1997. Disruption of semiochemical-mediated aggregation in bark beetles, pp. 421–438, in R. T. Carde and A. K. Minks (eds.). Pheromone Research: New Directions. Chapman & Hall, New York.Google Scholar
  21. Borden, J. H., Birmingham, A. L., and Burleigh, J. S. 2006. Evaluation of the push-pull tactic against the mountain pine beetle using verbenone and non-host volatiles in combination with pheromone-baited trees. Forestry Chronicle 82:579–590.Google Scholar
  22. Borden, J. H., Sparrow, G. R., and Gervan, N. L. 2007. Operational success of verbenone against the mountain pine beetle in a rural community. Arboric. Urb. For. 33:318–324.Google Scholar
  23. Broumas, T., Haniotakis, G., Liaropoulos, C., Tomazou, T., and Ragoussis, N. 2002. The efficacy of an improved form of the mass-trapping method, for the control of the olive fruit fly, Bactrocera oleae (Gmelin) (Dipt., Tephritidae): pilot-scale feasibility studies. J. Appl. Entomol. 126:217–223.CrossRefGoogle Scholar
  24. Brunner, J., Welter, S., Calkins, C., Hilton, R., Beers, E., Dunley, J., Unruh, T., Knight, A., Van Steenwyk, R., and Van Buskirk, P. 2002. Mating disruption of codling moth: a perspective from the Western United States. IOBC wprs Bulletin 25(9):11–19.Google Scholar
  25. Brunner, J. F., Beers, E. H., Dunley, J. E., Doerr, M., and Granger K. 2005. Role of neonicotinyl insecticides in Washington apple integrated pest management. Part I. 9 Control of lepidopteran pests. 10 pp. J. Insect Sci. 5:14.PubMedGoogle Scholar
  26. Bursell, E., Gough, A. J. E., Beevor, P. S., Cork, A., Hall, D. R., and Vale, G. A. 1988. Identification of components of cattle urine attractive to tsetse flies Glossina spp. (Diptera, Glossinidae). Bull. Entomol. Res. 78:281–291.CrossRefGoogle Scholar
  27. Butenandt, A., Beckmann, R., Stamm, D., and Hecker, E. 1959. Über den Sexual-Lockstoff des Seidensspinners Bombyx mori. Reindarstellung und Konstitution. Z. Naturforsch. 14b:283–284.Google Scholar
  28. Butler, S. M., Gerry, A. C., and Mullens, B. A. 2007. House fly (Diptera: Muscidae) activity near baits containing (Z)-9-tricosene and efficacy of commercial toxic fly baits on a Southern California dairy. J. Econ. Entomol. 100:1489–1495.PubMedCrossRefGoogle Scholar
  29. Cardé, R. T. and Minks, A. K. 1995. Control of moth pests by mating disruption: successes and constraints. Annu. Rev. Entomol. 40:559–585.CrossRefGoogle Scholar
  30. Cardé, R. T., and Haynes, K. F. 2004. Structure of the pheromone communication channel in moths, pp. 283–332, in R. T. Cardé, and J. G. Millar (eds.). Advances in Insect Chemical Ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  31. Cardé, R. T., and Willis, M. A. 2008. Navigational strategies used by insects to find distant, wind-borne sources of odor. J. Chem. Ecol. 34:854–866.PubMedCrossRefGoogle Scholar
  32. Carson, R. 1962. Silent Spring. Houghton Mifflin, Boston.Google Scholar
  33. Charmillot, P.-J., Hofer, D., and Pasquier, D. 2000. Attract and kill: a new method for control of the codling moth Cydia pomonella. Entomol. Exp. Appl. 94:211–216.CrossRefGoogle Scholar
  34. Charmillot, P.-J., Pasquier, D., and Hofer, D. 2002. Control of codling moth Cydia pomonella by autosterilization. IOBC wprs Bulletin 25:117–120.Google Scholar
  35. Clyne, P. J., Warr, C. G., Freeman, M. R., Lessing, D., Kim, J., and Carlson, J. R. 1999. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338.PubMedCrossRefGoogle Scholar
  36. Cook, S. M., Khan, Z. R., and Pickett, J. A. 2007. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 52:375–400.PubMedCrossRefGoogle Scholar
  37. Cork, A., De Souza, K., Krishnaiah, K., Kumar, D. V. S. S. R., Ashok Reddy, A. and Casagrande, E. 1996. Control of yellow stem borer, Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae) by mating disruption on rice in India: Effect of unnatural pheromone blends and application time on efficacy. Bull. Entomol. Res. 86:515–524.CrossRefGoogle Scholar
  38. Cork, A., Alam, S. N., Das, A., Das, C. S., Ghosh, G. C., Phythian, S., Farman, D. I., Hall, D. R., Maslen, N. R., Vedham, K., Rouf, F. M. A., and Srinivasan, K. 2001. Female sex pheromone of Brinjal fruit and shoot borer, Leucinodes orbonalis (Lepidoptera: Pyralidae): Blend optimization. J. Chem. Ecol. 27:1867–1877.PubMedCrossRefGoogle Scholar
  39. Cork, A., Alam, S. N., Rouf, F. M. A., and Talekar, N. S. 2003. Female sex pheromone of brinjal fruit and shoot borer, Leucinodes orbonalis (Lepidoptera: Pyralidae): trap optimization and application in IPM trials. Bull. Entomol. Res. 93:107–113.PubMedCrossRefGoogle Scholar
  40. Cork, A., Alam, S. N., Rouf, F. M. A., and Talekar, N. S. 2005a. Development of mass trapping technique for control of brinjal shoot and fruit borer, Leucinodes orbonalis (Lepidoptera: Pyralidae). Bull. Entomol. Res. 95:589–596.PubMedCrossRefGoogle Scholar
  41. Cork, A., Iles, M. J., Kamal, N. Q., Choudhury, J. C. S., Rahman, M. M., and Islam, M. 2005b. An old pest, a new solution: commercializing rice stemborer pheromones in Bangladesh. Outlook Agric. 34:181–187.Google Scholar
  42. Cork, A., De Souza, K., Hall, D. R., Jones, O. T., Casagrande, E., Krishnaiah, K., and Syed, Z. 2008. Development of PVC-resin-controlled release formulation for pheromones and use in mating disruption of yellow rice stem borer, Scirpophaga incertulas. Crop Prot. 27:248–255.CrossRefGoogle Scholar
  43. Crook, D.J. and Mastro, V.C. 2010. Chemical ecology of the emerald ash borer Agrilus planipennis. J. Chem. Ecol. this volume.Google Scholar
  44. Crook, D. J., Khrimian, A., Francese, J. A., Fraser, I., Poland, T. M., Sawyer, A. J., and Mastro, V. C. 2008. Development of a host-based semiochemical lure for trapping emerald ash borer Agrilus planipennis (Coleoptera : Buprestidae). Environ. Entomol. 37:356–365.PubMedCrossRefGoogle Scholar
  45. Cunningham, R. T., Kobayashi, R. M., and Miyashita, D. H. 1990. The male lures of tephritid fruit flies, pp. 113–129, in R. L. Ridgway, R. M. Silverstein, M. N. Inscoe (eds.). Behavior-modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.Google Scholar
  46. De Bruyne, M. and Baker, T. C. 2008. Odor detection in insects: volatile codes. J. Chem. Ecol. 34:882–897.PubMedCrossRefGoogle Scholar
  47. Del Socorro, A., Gregg, P., Tennant, R., and Moore, C. 2003. Attract-and-kill Heliothis for low pressure every season. Aust. Cottongrow. 24:16–19.Google Scholar
  48. Del Socorro, A. P., Gregg, P. C., Alter, D., and Moore, C. J. 2010a. Development of a synthetic plant volatile based attracticide for female noctuid moths. I. Potential sources of volatiles attractive to Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust. J. Entomol. (in press)Google Scholar
  49. Del Socorro, A. P., Gregg, P. C., and Hawes, A. J. 2010b. Development of a synthetic plant volatile based attracticide for female noctuid moths. III. Insecticides for adult Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust. J. Entomol. (in press)Google Scholar
  50. Dickson, B. J. 2008. Wired for sex: the neurobiology of Drosophila mating decisions. Science 322:904–909.PubMedCrossRefGoogle Scholar
  51. Ehrlich, P. R., Ehrlich, A. H., and Daily, G. C. 1993. Food security, population, and environment. Popul. Develop. Rev. 19:1–32.CrossRefGoogle Scholar
  52. El-Sayed, A. M. 2008. The Pherobase: database of insect pheromones and semiochemicals. www.pherobase.com.
  53. El-Sayed, A., Gödde, J., and Arn, H. 1999a. Sprayer for quantitative application of odor stimuli. Environ. Entomol. 28:947–953.Google Scholar
  54. El-Sayed, A., Gödde, J., Witzgall, P., and Arn, H. 1999b. Characterization of pheromone blend for grapevine moth, Lobesia botrana by using flight track recording. J. Chem. Ecol. 25:389–400.CrossRefGoogle Scholar
  55. El-Sayed, A. M., Suckling, D. M., Wearing, C. H., and Byers, J. A. 2006. Potential of mass trapping for long-term pest management and eradication of invasive species. J. Econ. Entomol. 99:1550–1564.PubMedCrossRefGoogle Scholar
  56. El-Sayed, A. M., Byers, J. A., Manning, M., Jürgens, A., Mitchell V. J., and Suckling M. 2008. Floral scent of Canada thistle and its potential as a generic insect attractant. J. Econ. Entomol.101:720–727.PubMedCrossRefGoogle Scholar
  57. El-Sayed, A. M., Suckling, D. M., Byers, J. A., Jang, E. B., and Wearing, C. H. 2009. Potential of “lure and kill” in long-term pest management and eradication of invasive species. J. Econ. Entomol. 102:815–835.PubMedCrossRefGoogle Scholar
  58. Elzen, G. W., and Hardee, D. D. 2003. United States Department of Agriculture-Agricultural Research Service research on managing insect resistance to insecticides. Pest Manag. Sci. 59:770–776.PubMedCrossRefGoogle Scholar
  59. Epstein, D. L., Zack, R. S., Brunner, J. F., Gut, L., and Brown, J. J. 2000. Effects of broad-spectrum insecticides on epigeal arthropod biodiversity in Pacific Northwest apple orchards. Environ. Entomol. 29:340–348.CrossRefGoogle Scholar
  60. Evenden, M. L., and McLaughlin, J. R. 2004. Factors influencing the effectiveness of an attracticide formulation against the Oriental fruit moth, Grapholita molesta. Entomol. Exp. Appl. 112:89–97.CrossRefGoogle Scholar
  61. Fadamiro, H. Y. and Baker, T. C. 2002. Pheromone puffs suppress mating by Plodia interpunctella and Sitotroga cerealella in an infested corn store. Entomol. Exp. Appl. 102:239–251.CrossRefGoogle Scholar
  62. Feldhege, M., Louis, F., and Schmutterer, H. 1995. Investigations on abundances of the grape moth Lobesia botrana Schiff in viticulture. Anzeiger Schädlingskunde Pflanzenschutz Umweltschutz 68:85–91.CrossRefGoogle Scholar
  63. Fraser, H. W. and Trimble, R. M. 2001. Effect of delayed mating on reproductive biology of the oriental fruit moth (Lepidoptera: Tortricidae). Can. Entomol. 133:219–227.CrossRefGoogle Scholar
  64. French, B. W., Chandler, L. D., and Riedell, W. E. 2007. Effectiveness of corn rootworm (Coleoptera: Chrysomelidae) areawide pest management in South Dakota. J. Econ. Entomol. 100:1542–1554.PubMedCrossRefGoogle Scholar
  65. Garvey, K. K. 2008. Plans to control light brown apple moth stir controversy. California Agric. 62:55–56.Google Scholar
  66. Geden, C. J., Szumlas, D. E., and Walker, T. W. 2009. Evaluation of commercial and field-expedient baited traps for house flies, Musca domestica L. (Diptera: Muscidae). J. Vector Ecol. 34:99–103.CrossRefGoogle Scholar
  67. Giblin-Davis, R. M., Oehlschlager, A. C., Perez, A., Gries, G., Gries, R., Weissling, T. J., Chinchilla, C. M., Pena, J. E., Hallett, R. H., Pierce, H. D., and Gonzalez, L. M. 1996. Chemical and behavioral ecology of palm weevils. Florida Entomol. 79:153–167.CrossRefGoogle Scholar
  68. Gillette, N. E., Erbilgin, N., Webster, J. N., Pederson, L., Mori, S. R., Stein, J. D., Owen, D. R., Bischel, K. M., and Wood, D. L. 2009a. Aerially applied verbenone-releasing laminated flakes protect Pinus contorta stands from attack by Dendroctonus ponderosae in California and Idaho. For. Ecol. Manag. 257:1405–1412.CrossRefGoogle Scholar
  69. Gillette, N. E., Mehmel, C. J., Webster, J. N., Mori, S. R., Erbilgin N., Wood, D. L., and Stein, J. D. 2009b. Aerially applied methylcyclohexenone-releasing flakes protect Pseudotsuga menziesii stands from attack by Dendroctonus pseudotsugae. For. Ecol. Manag. 257:1231–1236.CrossRefGoogle Scholar
  70. Goulson, D., Derwent, L. C., Hanley, M. E., Dunn, D. W., and Abolins, S. R. 2005. Predicting calyptrate fly populations from the weather, and probable consequences of climate change. J. Appl. Ecol. 42:795–804.CrossRefGoogle Scholar
  71. Gregg, P. C., Del Socorro, A. P., and Henderson, G. 2010. Development of a synthetic plant volatile based attracticide for female noctuid moths. II. Bioassays of synthetic plant volatiles as attractants for the adults of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust. J. Entomol. (in press)Google Scholar
  72. Gregory, P. J., Johnson, S. N., Newton, A. C., and Ingram, J. S. I. 2009. Integrating pests and pathogens into the climate change/food security debate. J. Exper. Bot. 60:2827–2838.CrossRefGoogle Scholar
  73. Guedot, C., Landolt, P. J., and Smithhisler, C. L. 2008. Odorants of the flowers of butterfly bush, Buddleja davidii, as possible attractants of pest species of moths. Florida Entomol. 91:576–582.Google Scholar
  74. Guerin, P. M., Buser, H. R., Tóth, M., Höbaus, E., Schmid, A., and Arn, H. 1986. Sex pheromone of Sparganothis pilleriana: E- and Z-11-tetradecenyl acetates as essential components. Entomol. Exp. Appl. 40:137–140.CrossRefGoogle Scholar
  75. Haddad, R., Khan, R., Takahashi, Y. K., Mori, K., Harel, D., and Sobel, N. 2008. A metric for odorant comparison. Nature Meth. 5:425–429.CrossRefGoogle Scholar
  76. Hall, D. R., Cork, A., Phythian, S. J., Chittamuru, S., Jayarama, B. K., Venkatesha, M. G., Sreedharan, K., Vinod Kumar, P. K. V., Seetharama, H. G., and Naidu, R. 2006. Identification of components of male-produced pheromone of coffee white stemborer, Xylotrechus quadripes. J. Chem. Ecol. 32:195–219.PubMedCrossRefGoogle Scholar
  77. Hall, D. R., Farman, D. I., Cross, J. V., Pope, T. W., Ando, T., and Yamamoto, M. 2009. (S)-2-Acetoxy-5-Undecanone, female sex pheromone of the raspberry cane midge, Resseliella theobaldi (Barnes). J. Chem. Ecol. 35:230–242.PubMedCrossRefGoogle Scholar
  78. Hallem, E. A., Dahanukar, A., and Carlson, J. R. 2006. Insect odor and taste receptors. Annu. Rev. Entomol. 51:113–135.PubMedCrossRefGoogle Scholar
  79. Hallett, R. H., Oehlschlager, A. C., and Borden, J. H. 1999. Pheromone trapping protocols for the Asian palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Int. J. Pest Manag. 45:231–237.CrossRefGoogle Scholar
  80. Hallett, R. H., Goodfellow, S. A., Weiss, R. M., and Olfert, O. 2009. MidgEmerge, a new predictive tool, indicates the presence of multiple emergence phenotypes of the overwintered generation of swede midge. Entomol. Exp. Appl. 130:81–97.CrossRefGoogle Scholar
  81. Harraca, V., Syed, Z., and Guerin, P. M. 2009. Olfactory and behavioural responses of tsetse flies, Glossina spp., to rumen metabolites. J. Comp. Physiol. A 195:815–824.CrossRefGoogle Scholar
  82. Haynes, K. R., Zhao, J. Z., and Latif, A. 1991. Identification of floral compounds from Abelie grandiflora that stimulate upwind flight in cabbage looper moths. J. Chem. Ecol. 17:637–646.CrossRefGoogle Scholar
  83. Heath, R. R., Landolt, P. J., Dueben, B., and Lenczewski, B. 1992. Identification of floral compounds of night-blooming jessamine attractive to cabbage looper moths. Environ. Entomol. 21:854–859.Google Scholar
  84. Hee, A. K. W., and Tan, K. H. 2004. Male sex pheromonal components derived from methyl eugenol in the hemolymph of the fruit fly Bactrocera papayae. J. Chem. Ecol. 30:2127–2138.PubMedCrossRefGoogle Scholar
  85. Hillbur, Y., Celander, M., Baur, R., Rauscher, S., Haftmann, J., Franke, S., and Francke, W. 2005. Identification of the sex pheromone of the swede midge, Contarinia nasturtii. J. Chem. Ecol. 31:1807–1828.PubMedCrossRefGoogle Scholar
  86. Howse, P. E., Stevens, I. D. R., and Jones, O. T. 1998. Insect Pheromones and Their Use in Pest Management. Chapman and Hall, London.Google Scholar
  87. Hummel, H. E. 2003. Introduction of Dibrotica virgifera virgifera into the old world and its consequences: a recently acquired invasive alien pest species on Zea mays from North America. Comm. Appl. Biol. Sci. Ghent Univ. 68:45–75.Google Scholar
  88. Hunter, M. D. 2001. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agric. Forest Entomol. 3:153–159.CrossRefGoogle Scholar
  89. Ilichev, A. L., Stelinski, L. L., Williams, D. G., and Gut, L. J. 2006. Sprayable microencapsulated sex pheromone formulation for mating disruption of oriental fruit moth (Lepidoptera: Tortricidae) in Australian peach and pear orchards. J. Econ. Entomol. 99:2048–2054.PubMedCrossRefGoogle Scholar
  90. Ioriatti, C., Lucchi, A., and Bagnoli, B. 2008. Grape areawide pest management in Italy, pp. 208–225, in O. Koul, G. Cuperus, and N. Elliott (eds.). Areawide Pest Management: Theory and Implementation. CAB International,Wallingford,UK.CrossRefGoogle Scholar
  91. Jacquin-Joly, E., and Merlin, C. 2004. Insect olfactory receptors: contributions of molecular biology to chemical ecology. J. Chem. Ecol. 30:2359–2397.PubMedCrossRefGoogle Scholar
  92. Jang, E. B., Light, D. M., Binder R. G., Flath, R. A., and Carvalho L. A. 1994. Attraction of female Mediterranean fruit-flies to the 5 major components of male-produced pheromone in a laboratory flight tunnel. J. Chem. Ecol. 20:9–20.CrossRefGoogle Scholar
  93. Jefferis, G. S. X. E, Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R., and Luo, L. 2007. Comprehensive maps of Drosophila higher olfactory centers: Spatially segregated fruit and pheromone representation. Cell 128:1187–1203.PubMedCrossRefGoogle Scholar
  94. Jones, V. P., Wiman, N. G. and Brunner, J. F. 2008. Comparison of delayed female mating on reproductive biology of codling moth and obliquebanded leafroller. Environ. Entomol. 37:679–685.PubMedCrossRefGoogle Scholar
  95. Jones, V. P., Unruh, T. R., Horton, D. R., Mills, N. J., Brunner, J. F., Beers, E. H., and Shearer P. W. 2009. Tree fruit IPM programs in the western United States: the challenge of enhancing biological control through intensive management. Pest Manag. Sci. 65:1305–1310.PubMedCrossRefGoogle Scholar
  96. Kiely, A., Authier, A., Kralicek, A. V., Warr, C. G., and Newcomb, R. D. 2007. Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J. Neurosc. Meth. 159:189–194.CrossRefGoogle Scholar
  97. Knight, A. L., and Light, D. M. 2005. Dose-response of codling moth (Lepidoptera: Tortricidae) to ethyl (E,Z)-2,4-decadienoate in apple orchards treated with sex pheromone dispensers. Environ. Entomol. 34:604–609.CrossRefGoogle Scholar
  98. Knight, A. L., Hilton, R., and Light, D. M. 2005. Monitoring codling moth (Lepidoptera: Tortricidae) in apple with blends of ethyl (E,Z)-2,4-decadienoate and codlemone. Environ. Entomol. 34:598–603.CrossRefGoogle Scholar
  99. Kobro, S., Søreide, L., Djønne, E., Rafoss, T., Jaastad, G., and Witzgall, P. 2003. Masting of rowan Sorbus aucuparia L. and consequences for the apple fruit moth, Argyresthia conjugella Zeller. Popul. Ecol. 45:25–30.Google Scholar
  100. Koch, U. T., Doye, E., Schumann, K., and Andrick, U. 2009a. CIRCE—an addition to the toolbox for assessment / improvement of mating disruption. IOBC wprs Bulletin 41:17–24.Google Scholar
  101. Koch, U. T., Luders, W., Andrick, U., Staten, R. T., and Carde, R. T. 2009b. Measurement by electroantennogram of airborne pheromone in cotton treated for mating disruption of Pectinophora gossypiella following removal of pheromone dispensers. Entomol. Exp. Appl. 130:1–9.CrossRefGoogle Scholar
  102. Krieger, J., Große-Wilde, E., Gohl, T., and Breer, H. 2005. Candidate pheromone receptors of the silkmoth Bombyx mori. Europ. J. Neurosc. 21:2167–2176.CrossRefGoogle Scholar
  103. Krupke, C. H., Roitberg, B. D., and Judd, G. J. R. 2002. Field and laboratory responses of male codling moth (Lepidoptera: Tortricidae) to a pheromone-based attract-and-kill strategy. Environ. Entomol. 31:189–197.CrossRefGoogle Scholar
  104. Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., Ebata, T., and Safranyik, L. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990.PubMedCrossRefGoogle Scholar
  105. Landolt, P. J., and Averill, A. L. 1999. Fruit flies, pp. 3–25, in J. Hardie and A. K. Minks (eds.), Pheromones of Nonlepidopteran Insects Associated with Agricultural Pests, CAB International, Wallingford, UK.Google Scholar
  106. Landolt, P. J., and Alfaro, J. F. 2001. Trapping Lacanobia subjuncta, Xestia c-nigrum, and Mamestra configurata (Lepidoptera: Noctuidae) with acetic acid and 3-methyl-1-butanol in controlled release dispensers. Environ. Entomol. 30:656–662.CrossRefGoogle Scholar
  107. Landolt, P. J., C. E. Smithhisler, H. C. Reed, and L. M. McDonough. 2000. Trapping social wasps (Hymenoptera: Vespidae) with acetic acid and saturated short chain alcohols. J. Econ. Entomol. 93:1613–1618.PubMedCrossRefGoogle Scholar
  108. Landolt, P. J., Adams, T., and Zack, R. S. 2006. Field response of alfalfa looper and cabbage looper moths (Lepidoptera: Noctuidae, Plusiinae) to single and binary blends of floral odorants. Environ. Entomol. 35:276–281.CrossRefGoogle Scholar
  109. Landolt, P. J., Suckling, D. M., and Judd, G. J. R. 2007. Positive interaction of a feeding attractant and a host kairomone for trapping the codling moth, Cydia pomonella (L.). J. Chem. Ecol. 33:2236–2244.PubMedCrossRefGoogle Scholar
  110. Leal, W. S., Barbosa, R. M. R., Xu, W., Ishida, Y., Syed, Z., Latte, N., Chen, A. M., Morgan, T. I., Cornel, A. J., and Furtado, A. 2008. Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS One 3(8):e3045.PubMedCrossRefGoogle Scholar
  111. Leonhardt, B. A., Cunningham, R. T., Dickerson, W. A., Mastro, V. C., Ridgway, R. L., and Schwalbe, C. P. 1990. Dispenser design and performance criteria for insect attractants, pp. 113–129 in R. L. Ridgway, R. M. Silverstein, M. N. Inscoe (eds.). Behavior-modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.Google Scholar
  112. Liebhold, A. M., and Tobin, P. C. 2008. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 53:387–408.PubMedCrossRefGoogle Scholar
  113. Lindh, J. M., Torr, S. J., Vale, G. A., and Lehane, M. J. 2009. Improving the cost-effectiveness of artificial visual baits for controlling the tsetse fly Glossina fuscipes fuscipes. PLOS Negl. Trop. Dis. 3:e474.PubMedCrossRefGoogle Scholar
  114. Louis, F., Schirra, K.-J., and Feldhege, M. 1997. Mating disruption in vineyards: determination of population densities and effects on beneficials. IOBC wprs Bulletin 20(1):95–99.Google Scholar
  115. Mafra-Neto, A., and Baker, T. C. 1996. Timed, metered sprays of pheromone disrupt mating of Cadra cautella (Lepidoptera: Pyralidae). J. Agr. Entomol. 13:149–168.Google Scholar
  116. Maier, C. T. 2008. Emergence, trapping, and seasonal abundance of adult Cerambycidae (Coleoptera) associated with Cupressaceae in Connecticut. J. Econ. Entomol. 101:430–437.PubMedCrossRefGoogle Scholar
  117. Mani, E., Schwaller, F., and Höhn, H. 1996. Bekämpfung des Apfelwicklers mit der Verwirrungsmethode in der deutschen Schweiz. Schweiz. Z. Obst-Weinbau 27:718–722.Google Scholar
  118. Mazomenos, B. E., and Haniotakis, G. E. 1985. Male olive fruit fly attraction to synthetic sex pheromone components in laboratory and field tests. J. Chem. Ecol. 11:397–405.CrossRefGoogle Scholar
  119. Mazzoni, V., Lucchi, A., Cokl, A., Presern, J., and Virant-Doberlet, M. 2009. Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol. Exp. Appl. 133:174–185.CrossRefGoogle Scholar
  120. McLean, J. A., and Borden, J. H. 1979. An operational pheromone-based suppression program for an ambrosia beetle, Gnathotrichus sulcatus, in a commercial sawmill. J. Econ. Entomol. 72:165–172.Google Scholar
  121. Metcalf, R. L., Metcalf, R. A., and Rhodes, A. M. 1980. Cucurbitacins as kairomones for diabroticite beetles. Proc. Natl. Acad. Sci. USA 77:3769–3772.PubMedCrossRefGoogle Scholar
  122. Miller, J. R., McGhee, P. S., Siegert, P. Y., Adams, C. G., Huang, J., Grieshop, M. J., and Gut, L. J. 2010. General principles of attraction and competitive attraction as revealed by large-cage studies of moths responding to sex pheromone. Proc. Natl. Acad. Sci. USA 107:22–27.Google Scholar
  123. Milli, R., Koch, U. T., and de Kramer, J. J. 1997. EAG measurement of pheromone distribution in apple orchards treated for mating disruption of Cydia pomonella. Entomol. Exp. Appl. 82:289–297.CrossRefGoogle Scholar
  124. Mo, J., Glover, M., Munro, S., and Beattie G. A. C. 2006. Evaluation of mating disruption for control of lightbrown apple moth (Lepidoptera: Tortricidae) in citrus. J. Econ. Entomol. 99:421–426.PubMedCrossRefGoogle Scholar
  125. Mochizuki, F., Fukumoto, T., Noguchi, H., Sugie, H., Morimoto, T., and Ohtani, K. 2002. Resistance to a mating disruptant composed of (Z)-11-tetradecenyl acetate in the smaller tea tortrix, Adoxophyes honmai (Yasuda) (Lepidoptera: Tortricidae). Appl. Entomol. Zool. 37:299–304.CrossRefGoogle Scholar
  126. Neumann, U., Schmid, A., Ioriatti, C., Varner, M., Castillo, R., Lucas, A., Perez Marin, J. L., and Castillo, M. A. 1993. La technique par confusion contre les “vers” de la grappe en Europe aujourd’hui. Phytoma 456:15–17.Google Scholar
  127. Nwilene, F. E., Nwanze, K. F., and Youdeowei, A. 2008. Impact of integrated pest management on food and horticultural crops in Africa. Entomol. Exp. Appl. 128:355–363.CrossRefGoogle Scholar
  128. Oehlschlager, A. C., Pierce, H. D., Morgan, B., Wimalaratne, P. D. C., Slessor, K. N., King, G. G. S., Gries, G., Gries, R., Borden, J. H., Jiron, L. F., Chinchilla, C. M., and Mexzon, R. 1992. Chirality and field testing of Rhynchophorol, the aggregation pheromone of the American palm weevil. Naturwiss. 79:134–135.CrossRefGoogle Scholar
  129. Oehlschlager, A. C., Chinchilla, C. M., Gonzalez, L. M., Jiron, R., Mexzon, L. F., and Morgan, B. 1993. Development of a pheromone based trapping system for Rhynchophorus palmarum (Coleoptera: Curculionidae). J. Econ. Entomol. 86:1382–1392.Google Scholar
  130. Oehlschlager, A. C., Chinchilla, C., Castillo, G., and Gonzalez, L. 2002. Control of red ring disease by mass trapping of Rhynchophorus palmarum (Coleoptera : Curculionidae). Florida Entomol. 85:507–513.CrossRefGoogle Scholar
  131. Oerke, E.-C. 2006. Crop losses to pests. J. Agric. Sci. 144:31–43.CrossRefGoogle Scholar
  132. Peltonen, M., Liebhold, A. M., Bjornstad, O. N., and Williams, D. W. 2002. Spatial synchrony in forest insect outbreaks: roles of regional stochasticity and dispersal. Ecology 83:3120–3129.CrossRefGoogle Scholar
  133. Pereyra, P. C., and Sanchez, N. E. 2006. Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 35:671–676.PubMedCrossRefGoogle Scholar
  134. Perez, A.L., Hallett, R.H., Giles, R., Gries, G., Oehlschlager, A.C, and Borden, J.H. 1996. Pheromone chirality of Asian palm weevils, Rhynchophorus ferrugineus (Oliv.) and R. vulneratus (Panz.) (Coleoptera: Cureulionidae). J. Chem. Ecol. 22:357–368.CrossRefGoogle Scholar
  135. Pickett, J.A., Birkett, M.A., Dewhirst, S.Y. Logan, J.G., Omollo, M.O., Torto, B., Pelletier, J., Syed, Z., and Leal, W.S. 2010. Chemical ecology of animal and human pathogen vectors in a changing global climate. J. Chem. Ecol. this volume.Google Scholar
  136. Pimentel, D., Stachow, U., Takacs, D. A., Brubaker, H. W., Dumas, A. R., Meaney, J. J., O’Neil, J. A. S., Onsi, D. E., and Corzilius, D. B. 1992. Conserving biological diversity in agricultural/forestry systems. BioScience 42:354–362.CrossRefGoogle Scholar
  137. Poletti, M., Maia, A. H. N., and Omoto, C. 2007. Toxicity of neonicotinoid insecticides to Neoseiulus californicus and Phytoseiulus macropilis (Acari: Phytoseiidae) and their impact on functional response to Tetranychus urticae (Acari: Tetranychidae). Biol. Contr. 40:30–36.CrossRefGoogle Scholar
  138. Pretty, J. N., Morison, J. I. L., and Hine, R. E. 2003. Reducing food poverty by increasing agricultural sustainability in developing countries. Agric. Ecosyst. Environm. 95:217–234.CrossRefGoogle Scholar
  139. Raguso, R. A. 2004. Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. Curr. Op. Plant Biol. 7:434–440.CrossRefGoogle Scholar
  140. Rauscher, S., and Arn, H. 1979. Mating suppression in tethered females of Eupoecilia ambiguella by evaporation of (Z)-9-dodecenyl acetate in the field. Entomol. Exp. Appl. 25:16–20.CrossRefGoogle Scholar
  141. Rauscher, S., Arn, H., and Guerin, P. 1984. Effects of dodecyl acetate and Z-10-tridecenyl acetate on attraction of Eupoecilia ambiguella males to the main sex pheromone component, Z-9-dodecenyl acetate. J. Chem. Ecol. 10:253–264.CrossRefGoogle Scholar
  142. Ray, A. M., Millar, J. G., McElfresh, J. S., Swift, I. P., Barbour, J. D., and Hanks, L. M. 2009. Male-produced aggregation pheromone of the cerambycid beetle Rosalia funebris. J. Chem. Ecol. 35:96–103.PubMedCrossRefGoogle Scholar
  143. Reddy, G. V. P., Cruz, Z. T., and Guerrero, A. 2009. Development of an efficient pheromone-based trapping method for the banana root borer Cosmopolites sordidus. J. Chem. Ecol. 35:111–117.PubMedCrossRefGoogle Scholar
  144. Reyes, M., Franck, P., Olivares, J., Margaritopoulos, J., Knight, A., and Sauphanor, B. 2009. Worldwide variability of insecticide resistance mechanisms in the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae). Bull. Entomol. Res. 99:359–369.PubMedCrossRefGoogle Scholar
  145. Ricci, B., Franck, P., Toubon, J.-F., Bouvier, J.-C., Sauphanor, B., and Lavigne, C. 2009. The influence of landscape on insect pest dynamics: a case study in southeastern France. Landscape Ecol. 24:337–349.CrossRefGoogle Scholar
  146. Ridgway, R.L., Inscoe, M.N., and Dickerson W.A. 1990a. Role of the boll weevil pheromone in pest management, pp. 437–471, in R. L. Ridgway, R. M. Silverstein, M. N. Inscoe (eds.). Behavior-modifying Chemicals for Insect Management: Applications of Pheromones and other Attractants. Marcel Dekker, New York.Google Scholar
  147. Ridgway, R. L., Silverstein, R. M., and Inscoe, M. N. 1990b. Behavior-modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.Google Scholar
  148. Rochat, D., Malosse, C., Lettere, M., Ducrot, P.-H., Zagatti, P., Renou, M., and Descions, C. 1991. Male-produced aggregation pheromone of the American palm weevil, Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae), collection, identification, electrophysiological activity and laboratory bioassay. J. Chem. Ecol. 17:1221–1230.CrossRefGoogle Scholar
  149. Rodstein, J., McElfresh, J. S., Barbour, J. D., Ray, A. M., Hanks, L. M., and Millar, J. G. 2009. Identification and synthesis of a female-produced sex pheromone for the cerambycid beetle Prionus californicus. J. Chem. Ecol. 35:590–600.PubMedCrossRefGoogle Scholar
  150. Said, I., Renou, M., Morin, J. P., Ferreira, J. M. S., and Rochat D. 2005. Interactions between acetoin, a plant volatile, and pheromone in Rhynchophorus palmarum: Behavioral and olfactory neuron responses. J. Chem. Ecol. 31:1789–1805.PubMedCrossRefGoogle Scholar
  151. Sanders, C. J. 1996. Mechanisms of mating disruption in moths, pp. 333–346, in R. T. Cardé, A. K. Minks (eds.). Insect Pheromone Research: New Directions. New York: Chapman & Hall.Google Scholar
  152. Sauer, A. E., Karg, G., Koch, U. T., de Kramer, J. J., and Milli, R. 1992. A portable EAG system for the measurement of pheromone concentrations in the field. Chem. Senses 17:543–553.CrossRefGoogle Scholar
  153. Schlenker, W., and Roberts, M. J. 2009. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sc. USA 106:15594–15598.CrossRefGoogle Scholar
  154. Schlyter, F., and Birgersson, G. 1999. Forest beetles, pp. 113–148, in R. J. Hardie and A. K. Minks (eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CAB International, Wallingford, U.K.Google Scholar
  155. Schlyter, F., Zhang, Q.-H., Liu, G.-T., and Ji, L.-Z. 2003. A successful case of pheromone mass trapping of the bark beetle Ips duplicatus in a forest island, analysed by 20-year time-series data. Integ. Pest. Manag. Rev. 6:185–196.CrossRefGoogle Scholar
  156. Schmidt-Büsser, D., von Arx, M., and Guerin, P. M. 2009. Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone. J. Comp. Physiol. A 195:853–864.CrossRefGoogle Scholar
  157. Schütz, S., Weissbecker, B., Hummel, H. E., Apel, K.-H., Schmitz, H., and Bleckmann, H. 1999. Insect antenna as a smoke detector. Nature 398:298–299.CrossRefGoogle Scholar
  158. Seybold, S. J., Huber, D. P. W., Lee, J. C., Graves, A. D. and Bohlmann, J. 2006. Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochem. Rev. 5:143–178.CrossRefGoogle Scholar
  159. Sharov, A. A., Leonard, D., Liebhold, A. M., Roberts, E. A., and Dickerson, W. 2002. Slow the spread: a national program to contain the gypsy moth. J. For. 100:30–35.Google Scholar
  160. Shorey, H. H. and Gerber, R. G. 1996. Use of puffers for disruption of sex pheromone communication of codling moths (Lepidoptera: Tortricidae) in walnut orchards. Environ. Entomol. 25:1398–1400.Google Scholar
  161. Siegfried, B. D., Meinke, L. J., Parimi, S., Scharf, M. E., Nowatzki, T. J., Zhou, X., and Chandler, L. D. 2004. Monitoring western corn rootworm (Coleoptera : Chrysomelidae) susceptibility to carbaryl and cucurbitacin baits in the Areawide Management Pilot Program. J. Econ. Entomol. 97:1726–1733.PubMedCrossRefGoogle Scholar
  162. Smith, J. W. 1998. Boll weevil eradication: Area-wide pest management. Ann. Entomol. Soc. Am. 91:239–247.Google Scholar
  163. Soroker, V., Blumberg, D., Haberman, A., Hamburger-Rishard, M., Rene, S., Tabelaev, S., Anshelevich, L., and Harari, A. R. 2005. Current status of red palm weevil infestation in date palm plantations in Israel. Phytoparasitica 33:97–106.CrossRefGoogle Scholar
  164. Stelinski, L. L., and Gut, L. J. 2009. Delayed mating in tortricid leafroller species: simultaneously aging both sexes prior to mating is more detrimental to female reproductive potential than aging either sex alone. Bull. Entomol. Res. 99:245–251.PubMedCrossRefGoogle Scholar
  165. Stelinski, L. L., Miller, J. R., and Rogers, M. E. 2008. Mating disruption of citrus leafminer mediated by a noncompetitive mechanism at a remarkably low pheromone release rate. J. Chem. Ecol. 34:1107–1113.PubMedCrossRefGoogle Scholar
  166. Stern, V. M., Smith, R. F., van den Bosch, R., and Hagen, K. S. 1959. The integrated control concept. Hilgardia 29:81–101.Google Scholar
  167. Suckling, D. M., and J. R. Clearwater. 1990. Small scale trials of mating disruption of Epiphyas postvittana (Lepidoptera: Tortricidae). Environ. Entomol. 19:1702–1709.Google Scholar
  168. Suckling, D. M., and Shaw, P. W. 1995. Large scale trials of mating disruption of light brown apple moth. N. Z. J. Crop Hort. Sci. 23:127–137.Google Scholar
  169. Suckling, D. M., and Brockerhoff, E. G. 1999. Control of lightbrown apple moth (Lepidoptera: Tortricidae) using an attracticide. J. Econ. Entomol. 92:367–372.Google Scholar
  170. Suckling, D. M., Shaw, P. W., Khoo, J. G. I., and Cruickshank, V. 1990. Resistance management of lightbrown apple moth, Epiphyas postvittana (Lepidoptera: Tortricidae) by mating disruption. N. Z. J. Crop Hort. Sc. 18:89–98.Google Scholar
  171. Svatos, A., Attygalle, A. B., Jham, G. N., Frighetto, R. T. S., Vilela, E. F., Saman, D., and Meinwald, J. 1996. Sex pheromone of tomato pest Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae). J. Chem. Ecol. 22:787–800.CrossRefGoogle Scholar
  172. Switzer, P. V., Enstrom, P. C., and Schoenick, C. A. 2009. Behavioral explanations underlying the lack of trap effectiveness for small-scale management of Japanese beetles (Coleoptera: Scarabaeidae). J. Econ. Entomol. 102:934–940.PubMedCrossRefGoogle Scholar
  173. Tabata, J., Noguchi, H., Kainoh, Y., Mochizuki, F., and Sugie, H. 2007a. Behavioral response to sex pheromone-component blends in the mating disruption-resistant strain of the smaller tea tortrix, Adoxophyes honmai Yasuda (Lepidoptera: Tortricidae), and its mode of inheritance. Appl. Entomol. Zool. 42:675–683.CrossRefGoogle Scholar
  174. Tabata, J., Noguchi, H., Kainoh, Y., Mochizuki, F., and Sugie H. 2007b. Sex pheromone production and perception in the mating disruption-resistant strain of the smaller tea leafroller moth, Adoxophyes honmai. Entomol. Exp. Appl. 122:145–153.CrossRefGoogle Scholar
  175. Tcheslavskaia, K. S., Thorpe, K. W., Brewster, C. C., Sharov, A. A., Leonard, D. S., Reardon, R. C., Mastro, V. C., Sellers, P., and Roberts E. A. 2005. Optimization of pheromone dosage for gypsy moth mating disruption. Ent. Exp. Appl. 115:355–361.CrossRefGoogle Scholar
  176. Thrupp, L. A. 2000. Linking agricultural biodiversity and food security: the valuable role of agrobiodiversity for sustainable agriculture. International Affairs 76:265–281.PubMedCrossRefGoogle Scholar
  177. Ting, D. 2009. Human Health Risk Assessment of Isomate LBAM Plus. Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency.Google Scholar
  178. Tinsworth, E. F. 1990. Regulation of pheromones and other semiochemicals in the United States, pp. 569–603, in R. L. Ridgway, R. M. Silverstein, and M. N. Inscoe (eds.). Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. New York: Marcel Dekker.Google Scholar
  179. Tobin, P. C., Sharov, A. A., Liebhold, A. A., Leonard, D. S., Roberts, E. A., and Learn, M. R. 2004. Management of the gypsy moth through a decision algorithm under the STS Project. Am. Entomol. 50:200–209.Google Scholar
  180. Tobin, P. C., Blackburn, L. M., Leonard, D. S., Liebhold, A. M., McManus, M. L., Roberts, E. A., Sharov, A. A., Thorpe, K. W., and Ziegler, A. H. 2007. Slow the Spread: a national program to manage the gypsy moth. Gen. Tech. Rep. NRS-6. Newtown Square, PA. Department of Agriculture, Forest Service, Northern Research Station. www.nrs.fs.fed.us/pubs/gtr/gtr_nrs6.pdf
  181. Toth, M., Vuts, J., Szarukan, I., Juhasz, I., and Manajlovics, F. 2007. Preliminary study of female-targeted semiochemical baits for the western corn rootworm in Europe. J. Appl. Entomol. 131:416–419.CrossRefGoogle Scholar
  182. Toth, M., Furlan, L., Xavier, A., Vuts, J., Toshova, T., Subchev, M., Szarukan, I., and Yatsynin, V. 2008. New sex attractant composition for the click beetle Agriotes proximus: Similarity to the pheromone of Agriotes lineatus. J. Chem. Ecol. 34:107–111.PubMedCrossRefGoogle Scholar
  183. Torr, S. J., Hall, D. R., Phelps, R. J., and Vale, G. A. 1997. Methods for dispensing odour attractants for tsetse flies (Diptera: Glossinidae). Bull. Entomol. Res. 87:299–311.CrossRefGoogle Scholar
  184. Torr, S. J., Hargrove, J. W., and Vale, G. A. 2010. Towards a rational policy for dealing with tsetse. Tr. Parasitol. (in press)Google Scholar
  185. Trimble, R. M., Vickers, P. M., Nielsen, K. E., and Barinshteyn, G. 2003. Sprayable pheromone for controlling the North American grape berry moth by mating disruption. Agric. Forest Entomol. 5:263–268.CrossRefGoogle Scholar
  186. Tumlinson, J. H., Guelder, R. C., Hardee, D. D., Thompson, A. C., Hedin, P. A., and Minyard, J. P. 1969. Sex pheromones produced by male boll weevil: isolation, identification and synthesis. Science 166:1010–1012.PubMedCrossRefGoogle Scholar
  187. Urech, R., Green, P. E., Rice, M. J., Brown, G. W., Duncalfe, F., and Webb, P. 2004. Composition of chemical attractants affects trap catches of the Australian sheep blowfly, Lucilia cuprina, and other blowflies. J. Chem. Ecol. 30:851–866.PubMedCrossRefGoogle Scholar
  188. Urech, R., Green, P. E., Rice, M. J., Brown, G. W., Webb, P., Jordan, D., Wingett, M., Mayer, D. G., Butler, L., Joshua, E., Evans, I., Toohey, L., and Dadour, I. R. 2009. Suppression of populations of Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae), with a novel blowfly trap. Austr. J. Entomol. 48:182–188.CrossRefGoogle Scholar
  189. Vale, G. A., Lovemore, D. F., Flint, S. and Cockbill, G. F. 1988. Odour-baited targets to control tsetse flies, Glossina spp. (Diptera: Glossinidae) in Zimbabwe. Bull. Entomol. Res. 78:31–49.CrossRefGoogle Scholar
  190. Van der Goes van Naters, W., and Carlson, J. R. 2006. Insects as chemosensors of humans and crops. Nature 444:302–307.PubMedCrossRefGoogle Scholar
  191. Van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fulé, P. Z., Harmon, M. E., Larson, A. J., Smith, J. M., Taylor, A. H., and Veblen T. T. 2009. Widespread increase of tree mortality rates in the Western United States. Science 323:521–524.PubMedCrossRefGoogle Scholar
  192. Varela, L. G., Johnson, M. W., Strand, L., Wilen, C. A., and Pickel, C. 2008. Light brown apple moth’s arrival in California worries commodity groups. California Agric. 62:57–61.CrossRefGoogle Scholar
  193. Vargas, R. I., Mau, R. F. L., Jang, E. B., Faust, R. M. and Wong L. 2008. The Hawaii fruit fly area-wide pest management program, pp. 300–325, in O. Koul, G. W. Cuperus and N. C. Elliott (eds.). Areawide Pest Management: Theory and Implementation. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
  194. Varner, M., Lucin, R., Mattedi, L., and Forno, F. 2001. Experience with mating disruption technique to control grape berry moth, Lobesia botrana, in Trentino. IOBC wprs Bulletin 24(2):81–88.Google Scholar
  195. Vernon, R. S. and Toth, M. 2007. Evaluation of pheromones and a new trap for monitoring Agriotes lineatus and Agriotes obscurus in the Fraser Valley of British Columbia. J. Chem. Ecol. 33:345–351.PubMedCrossRefGoogle Scholar
  196. Vickers, R. A. 1997. Effect of delayed mating on oviposition pattern, fecundity and fertility in codling moth, Cydia pomonella (L.) (Lepidoptera:Tortricidae). Aust. J. Entomol. 36:179–82.CrossRefGoogle Scholar
  197. Vogt, H., Schropp, A., Neumann, U., and Eichhorn, K. W. 1993. Field trials on mating disruption to control the European grape moth Eupoecilia ambiguella Hbn. J. Appl. Entomol. 115:217–232.CrossRefGoogle Scholar
  198. Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A., and Axel, R. 1999. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736.PubMedCrossRefGoogle Scholar
  199. Waldner, W. 1997. Three years of large-scale control of codling moth by mating disruption in the South Tyrol, Italy. IOBC wprs Bulletin 20(1):35–44.Google Scholar
  200. Wall, C., Garthwaite, D. G., Blood Smyth, J. A., and Sherwood, A. 1987. The efficacy of sex-attractant monitoring for the pea moth, Cydia nigricana, in England, 1980–1985. Ann. appl. Biol. 110:223–229.CrossRefGoogle Scholar
  201. Ward, M. P., and Farrell, R. 2003. Sheep blowfly strike reduction using a synthetic lure system. Prev. Vet. Med. 59:21–26.PubMedCrossRefGoogle Scholar
  202. Weatherston, I. 1990. Principles of design of controlled-release formulations, pp. 93–112, in R. L. Ridgway, R. M. Silverstein, and M.N. Inscoe (eds.). Behavior-modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.Google Scholar
  203. Weddle, P. W., Welter, S. C., and Thomson, D. 2009. History of IPM in California pears-50 years of pesticide use and the transition to biologically intensive IPM. Pest Manag. Sci. 65:1287–1292.PubMedCrossRefGoogle Scholar
  204. Wetzel, C., Behrendt, H., Gisselmann, G., Stortkuhl, K., Hovemann, B., and Hatt, H. 2001. Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc. Natl. Acad. Sci. USA 98:9377–9380.PubMedCrossRefGoogle Scholar
  205. Witzgall, P., Bäckman, A.-C., Svensson, M., Koch, U. T., Rama, F., El-Sayed, A., Brauchli, J., Arn, H., Bengtsson, M., and Löfqvist, J. 1999. Behavioral observations of codling moth, Cydia pomonella, in orchards permeated with synthetic pheromone. BioControl 44:211–237.CrossRefGoogle Scholar
  206. Witzgall, P., Stelinski, L., Gut, L., and Thomson, D. 2008. Codling moth management and chemical ecology. Annu. Rev. Entomol. 53:503–522.PubMedCrossRefGoogle Scholar
  207. Wright, R. H. 1964. After Pesticides—what? Nature 204:121–125.PubMedCrossRefGoogle Scholar
  208. Xue, B. Y., Rooney, A. P., Kajikawa, M., Okada, N., and Roelofs, W. L. 2007. Novel sex pheromone desaturases in the genomes of corn borers generated through gene duplication and retroposon fusion. Proc. Natl. Acad. Sc. USA 104:4467–4472.CrossRefGoogle Scholar
  209. Yamamoto, A. and Ogawa, K. 1989. Chemistry and commercial production of pheromones and other behaviour-modifying chemicals, pp. 123–148, in A. R. Jutsum, and R. F. S. Gordon (eds.). Insect Pheromones in Plant Protection. John Wiley, London.Google Scholar
  210. Zhang, Q.-H. and Schlyter, F. 2004. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agric. Forest Entomol. 6:1–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.SLU, Chemical Ecology GroupAlnarpSweden
  2. 2.APTIVPortlandUSA
  3. 3.Natural Resources InstituteUniversity of GreenwichChatham Maritime, KentUK

Personalised recommendations