Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1081–1088 | Cite as

Study of Aggregation of Gold Nanoparticles in Chitosan

  • Galo Cárdenas-Triviño
  • Christian Cruzat-Contreras
Original Paper
  • 55 Downloads

Abstract

In this work it is reported the synthesis of gold nanoparticles supported in situ in chitosan by solvated metal atom dispersion technique in order to study the inclusion of Au nanoparticles in the biopolymer matrix. To study their aggregation along time and compare with the synthesis of Au/2-propanol colloid by chemical liquid deposition technique. Studies of Au nanoparticles aggregation along time, supported nanoparticles and colloidal nanoparticles morphology were also carried out. The characterization of Au nanoparticles was performed by transmission electron microscopy, field-emission and scanning electron microscopy, infrared spectroscopy, X-ray diffraction, light scattering and ultraviolet–visible spectroscopy. Metal colloid showed fractal agglomeration type and delay time after the synthesis, the agglomeration size increased to flocculate. Au nanoparticles supported in chitosan showed the same shape as colloids and fractal aggregation was mostly distributed on the matrix.

Keywords

Nanostructures Polymer Transmission electron microscopy (TEM) Colloid agglomeration Supported nanoparticles 

Notes

Acknowledgments

This work was supported by FONDECYT 1080704 and 1140025. C. Cruzat-Contreras acknowledge Consejo Nacional de Ciencia y Tecnología de Chile (CONICYT) for scholarship grants.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M. Pileni (2003). Nat. Mater. 2, 145.CrossRefPubMedGoogle Scholar
  2. 2.
    B. Khanra and M. Menon (2000). Physica B 291, 368.CrossRefGoogle Scholar
  3. 3.
    G. Cárdenas-Triviño, K. Klabunde, and B. Dale (1987). Langmuir 3, 986.CrossRefGoogle Scholar
  4. 4.
    M. Meléndrez, G. Cárdenas, J. Díaz, C. Cruzat, and J. Arbiol (2009). Colloid Polym. Sci. 287, 13.CrossRefGoogle Scholar
  5. 5.
    K. Oh, R. Kim, J. Lee, D. Kim, S. Cho, and S. Yuk (2008). J. Appl. Polym. Sci. 108, 3239.CrossRefGoogle Scholar
  6. 6.
    G. Cárdenas and J. Acuña (2001). Colloid Polym. Sci. 279, 442.CrossRefGoogle Scholar
  7. 7.
    M. Meléndrez, G. Cárdenas, J. Morales, J. Díaz, and C. Cruzat (2009). Polym. Bull. 62, 355.CrossRefGoogle Scholar
  8. 8.
    J. Liao, Y. Zhang, W. Yu, L. Xu, C. Ge, J. Liu, and N. Gu (2003). Colloids Surf. A: Physicochem. Eng. Aspects 223, 177.CrossRefGoogle Scholar
  9. 9.
    J. C. Kitchen and J. R. V. Zaneveld (1995). Appl. Opt. 34, 31.CrossRefGoogle Scholar
  10. 10.
    C. Pecharromán, A. Esteban-Cubillo, H. Fernández, L. Esteban-Tejeda, R. Pina-Zapardiel, J. Moya, J. Solis, and C. Afonso (2009). Plasmonics 4, 261.CrossRefGoogle Scholar
  11. 11.
    P. Sen and D. Tanner (1982). Phys. Rev. B 26, 3582.CrossRefGoogle Scholar
  12. 12.
    R. Ruppin (1979). Phys. Rev. B 19, 1318.CrossRefGoogle Scholar
  13. 13.
    S. Forster (2003). Top Curr. Chem. 226, 1.CrossRefGoogle Scholar
  14. 14.
    Z. Chen, C. Zhang, Y. Tan, T. Zhou, H. Ma, C. Wan, Y. Lin, and K. Li (2015). MicrochimActa 182, 611.Google Scholar
  15. 15.
    G. Cárdenas, J. Díaz, M. Meléndrez, C. Cruzat, and A. García (2009). Polym. Bull. 62, 511.CrossRefGoogle Scholar
  16. 16.
    L. Tang and D. Hon (2001). J. Appl. Polym. Sci. 79, 1476.CrossRefGoogle Scholar
  17. 17.
    S. Brewer, S. Anthireya, S. Lappi, D. Drapcho, and S. Franzen (2002). Langmuir 18, 4460.CrossRefGoogle Scholar
  18. 18.
    X. Wang, Y. Du, L. Fan, H. Liu, and Y. Hu (2005). Polym. Bull. 55, 105.CrossRefGoogle Scholar
  19. 19.
    J. Alvino, T. Bennett, D. Anderson, B. Donoeva, D. Ovoshchnikov, R. Adnan, D. Appadoo, V. Golovko, G. Andersson, and G. Metha (2013). RSC Adv. 3, 22140.CrossRefGoogle Scholar
  20. 20.
    C. Sun, R. Qu, H. Chen, C. Ji, C. Wang, Y. Sun, and B. Wang (2008). Carbohydr. Res. 343, 2595.CrossRefPubMedGoogle Scholar
  21. 21.
    C. Mayer, S. Neveu, C. Simonnet-Jégat, C. Debiemme-Chouvy, V. Cabuil, and F. Secheresse (2003). J. Mater. Chem. 13, 338.CrossRefGoogle Scholar
  22. 22.
    G. Cárdenas and P. Shevlin (1984). J. Org. Chem. 49, 4726.CrossRefGoogle Scholar
  23. 23.
    D. Cockayne (2007). Annu. Rev. Mater. Res. 37, 159.CrossRefGoogle Scholar
  24. 24.
    R. Muzzareli and A. Ferrero (1972). Talanta 19, 1222.CrossRefPubMedGoogle Scholar
  25. 25.
    G. Clark and A. Smith (1936). J. Phys. Chem. 40, 863.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Galo Cárdenas-Triviño
    • 1
  • Christian Cruzat-Contreras
    • 2
  1. 1.Facultad de Ingeniería, DIMAD, Centro de Biomateriales y NanotecnologíaUniversidad del Bío-BíoConcepciónChile
  2. 2.CEDIA-ProyectosUniversidad de CuencaCuencaEcuador

Personalised recommendations