Advertisement

Promotion of adhesion and proliferation of endothelial progenitor cells on decellularized valves by covalent incorporation of RGD peptide and VEGF

  • Jianliang ZhouEmail author
  • Jingli Ding
  • Bin’en Nie
  • Shidong Hu
  • Zhigang Zhu
  • Jia Chen
  • Jianjun Xu
  • Jiawei Shi
  • Nianguo DongEmail author
Engineering and Nano-engineering Approaches for Medical Devices Original Research
Part of the following topical collections:
  1. Engineering and Nano-engineering Approaches for Medical Devices

Abstract

Tissue engineered heart valve is a promising alternative to current heart valve surgery, for its capability of growth, repair, and remodeling. However, extensive development is needed to ensure tissue compatibility, durability and antithrombotic potential. This study aims to investigate the biological effects of multi-signal composite material of polyethyl glycol-cross-linked decellularized valve on adhesion and proliferation of endothelial progenitor cells. Group A to E was decellularized valve leaflets, composite material of polyethyl glycol-cross-linked decellularized valves leaflets, vascular endothelial growth factor-composite materials, Arg-Gly-Asp peptide-composite materials and multi-signal modified materials of polyethyl glycol-cross-linked decellularized valve leaflets, respectively. The endothelial progenitor cells were seeded for each group, cell adhesion and proliferation were detected and neo-endothelium antithrombotic function of the multi-signal composite materials was evaluated. At 2, 4, and 8 h after the seeding, the cell numbers and 3H-TdR incorporation in group D were the highest. At 2, 4, and 8 days after the seeding, the cell numbers and 3H-TdR incorporation were significantly higher in groups C, D, and E compared with groups A and B (P < 0.05) and cell numbers and the expression of t-PA and eons in the neo-endothelium were quite similar to those in the human umbilical vein endothelial cells at 2, 4, and 8 days after the seeding. The Arg-Gly-Asp- peptides (a sequential peptide composed of arginine (Arg), glycine (Gly) and aspartic acid (Asp)) and VEGF-conjugated onto the composite material of PEG-crosslinked decellularized valve leaflets synergistically promoted the adhesion and proliferation of endothelial progenitor cells on the composite material, which may help in tissue engineering of heart valves.

Keywords

Vascular Endothelial Growth Factor Endothelial Progenitor Cell Valve Leaflet Acryloyl Biological Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was funded by a grant from the National High-tech Research and Development Program (863 Program) of China (No. 2014AA020539), the National Natural Science Foundation of China (No. 81260047, No. 81270297, and No. 31330029), and the Youth Science Foundation of Jiangxi Province, China (20122BAB215016).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mathew JG, Spyropoulos AC, Yusuf A, Vincent J, Eikelboom J, Shestakovska O, Fremes S, Noora J, Guo L, Peterson M, Pai M, Whitlock R. Efficacy and safety of early parenteral anticoagulation as a bridge to warfarin after mechanical valve replacement. Throm haemost. 2014;112(6):1120–8. doi: 10.1160/th14-03-0284.CrossRefGoogle Scholar
  2. 2.
    Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr., Bolger AF, Levison ME, Ferrieri P, Gerber MA, Tani LY, Gewitz MH, Tong DC, Steckelberg JM, Baltimore RS, Shulman ST, Burns JC, Falace DA, Newburger JW, Pallasch TJ, Takahashi M, Taubert KA. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation. 2005;111(23):e394–e434. doi: 10.1161/circulationaha.105.165564.CrossRefGoogle Scholar
  3. 3.
    Parvin Nejad S, Blaser MC, Santerre JP, Caldarone CA, Simmons CA. Biomechanical conditioning of tissue engineered heart valves: too much of a good thing?. Adv Drug deliv Rev. 2016;96:161–75. doi: 10.1016/j.addr.2015.11.003.CrossRefGoogle Scholar
  4. 4.
    Kasimir MT, Weigel G, Sharma J, Rieder E, Seebacher G, Wolner E, Simon P. The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation. Throm haemost. 2005;94(3):562–7. doi: 10.1160/TH05-01-0025.Google Scholar
  5. 5.
    Breuer CK, Mettler BA, Anthony T, Sales VL, Schoen FJ, Mayer JE. Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Tissue Eng. 2004;10(11-12):1725–36. doi: 10.1089/ten.2004.10.1725.CrossRefGoogle Scholar
  6. 6.
    de Mel A, Jell G, Stevens MM, Seifalian AM. Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules. 2008;9(11):2969–79. doi: 10.1021/bm800681k.CrossRefGoogle Scholar
  7. 7.
    Hu XJ, Dong NG, Shi JW, Deng C, Li HD, Lu CF. Evaluation of a novel tetra-functional branched poly(ethylene glycol) crosslinker for manufacture of crosslinked, decellularized, porcine aortic valve leaflets. J Biomed Mater Res Part B Appl Biomater. 2014;102(2):322–36. doi: 10.1002/jbm.b.33010.CrossRefGoogle Scholar
  8. 8.
    Gloria A, Causa F, Russo T, Battista E, Della Moglie R, Zeppetelli S, De Santis R, Netti PA, Ambrosio L. Three-dimensional poly(ε-caprolactone) bioactive scaffolds with controlled structural and surface properties. Biomacromolecules. 2012;13(11):3510–21. doi: 10.1021/bm300818y.CrossRefGoogle Scholar
  9. 9.
    Lee J, Guarino V, Gloria A, Ambrosio L, Tae G, Kim YH, Jung Y, Kim SH, Kim SH. Regeneration of Achilles’ tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties. J Biomater Sci Polym Ed. 2010;21(8-9):1173–90. doi: 10.1163/092050609X12471222313524.CrossRefGoogle Scholar
  10. 10.
    Hu Y, Winn SR, Krajbich I, Hollinger JO. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. J Biomed Mater Res Part A. 2003;64(3):583–90. doi: 10.1002/jbm.a.10438.CrossRefGoogle Scholar
  11. 11.
    Dong X, Wei X, Yi W, Gu C, Kang X, Liu Y, Li Q, Yi D. RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci Mater Med. 2009;20(11):2327–36. doi: 10.1007/s10856-009-3791-4.CrossRefGoogle Scholar
  12. 12.
    Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24(24):4385–415.CrossRefGoogle Scholar
  13. 13.
    Pallarola D, Bochen A, Boehm H, Rechenmacher F, Sobahi TR, Spatz JP, Kessler H. Interface immobilization chemistry of cRGD‐based peptides regulates integrin mediated cell adhesion. Adv Funct Mater. 2014;24(7):943–56.Google Scholar
  14. 14.
    Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S. The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater. 2011;7(1):152–62. doi: 10.1016/j.actbio.2010.07.034.CrossRefGoogle Scholar
  15. 15.
    Shi J, Dong N, Sun Z. Immobilization of decellularized valve scaffolds with Arg-Gly-Asp-containing peptide to promote myofibroblast adhesion. J Huazhong Univ Sci Technol Med Sci. 2009;29(4):503–7. doi: 10.1007/s11596-009-0422-8.CrossRefGoogle Scholar
  16. 16.
    Tran NQ, Joung YK, Lih E. RGD-conjugated in situ forming hydrogels as cell-adhesive injectable scaffolds. Macromol Res. 2011;19(3):300–6.CrossRefGoogle Scholar
  17. 17.
    Wang H, Ma L, Yang S, Shao Z, Meng C, Duan D, Li Y. Effect of RGD-modified silk material on the adhesion and proliferation of bone marrow-derived mesenchymal stem cells. J Huazhong Univ Sci Technol Med Sci. 2009;29(1):80–3. doi: 10.1007/s11596-009-0117-1.CrossRefGoogle Scholar
  18. 18.
    Zhu J, He P, Lin L, Jones DR, Marchant RE. Biomimetic poly(ethylene glycol)-based hydrogels as scaffolds for inducing endothelial adhesion and capillary-like network formation. Biomacromolecules 2012;13(3):706–13. doi: 10.1021/bm201596w.CrossRefGoogle Scholar
  19. 19.
    Zhu J, Tang C, Kottke-Marchant K, Marchant RE. Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjugate Chem. 2009;20(2):333–9. doi: 10.1021/bc800441v.CrossRefGoogle Scholar
  20. 20.
    Ferrara N, Houck K, Jakeman L, Leung DW. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev. 1992;13(1):18–32. doi: 10.1210/edrv-13-1-18.CrossRefGoogle Scholar
  21. 21.
    Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13(1):9–22.Google Scholar
  22. 22.
    Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmokel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 2003;17(15):2260–2. doi: 10.1096/fj.02-1041fje.Google Scholar
  23. 23.
    Knetsch ML, Koole LH. VEGF-E enhances endothelialization and inhibits thrombus formation on polymeric surfaces. J Biomed Mater Res Part A. 2010;93(1):77–85. doi: 10.1002/jbm.a.32538.Google Scholar
  24. 24.
    Müller S, Koenig G, Charpiot A. VEGF-functionalized polyelectrolyte multilayers as proangiogenic prosthetic coatings. Adv Funct Mater. 2008;18(12):1767–75.CrossRefGoogle Scholar
  25. 25.
    Shen YH, Shoichet MS, Radisic M. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater. 2008;4(3):477–89. doi: 10.1016/j.actbio.2007.12.011.CrossRefGoogle Scholar
  26. 26.
    Porter AM, Klinge CM, Gobin AS. Biomimetic hydrogels with VEGF induce angiogenic processes in both hUVEC and hMEC. Biomacromolecules. 2011;12(1):242–6. doi: 10.1021/bm101220b.CrossRefGoogle Scholar
  27. 27.
    Leslie-Barbick JE, Moon JJ, West JL. Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J Biomater Sci Polym Ed. 2009;20(12):1763–79. doi: 10.1163/156856208X386381.CrossRefGoogle Scholar
  28. 28.
    Poh CK, Shi Z, Lim TY, Neoh KG, Wang W. The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials. 2010;31(7):1578–85. doi: 10.1016/j.biomaterials.2009.11.042.CrossRefGoogle Scholar
  29. 29.
    Leach JK, Kaigler D, Wang Z, Krebsbach PH, Mooney DJ. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials. 2006;27(17):3249–55. doi: 10.1016/j.biomaterials.2006.01.033.CrossRefGoogle Scholar
  30. 30.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.CrossRefGoogle Scholar
  31. 31.
    Sales VL, Engelmayr GC Jr., Mettler BA, Johnson JA Jr., Sacks MS, Mayer JE Jr. Transforming growth factor-beta1 modulates extracellular matrix production, proliferation, and apoptosis of endothelial progenitor cells in tissue-engineering scaffolds. Circulation. 2006;114(1 Suppl):I193–9. doi: 10.1161/circulationaha.105.001628.Google Scholar
  32. 32.
    Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FW, Schoen FJ, Mayer JE Jr., Bischoff J. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol. 2004;287(2):H480–H487. doi: 10.1152/ajpheart.01232.2003.CrossRefGoogle Scholar
  33. 33.
    Hristov M, Erl W, Weber PC. Endothelial progenitor cells: isolation and characterization. Trends Cardiovasc Med. 2003;13(5):201–6.CrossRefGoogle Scholar
  34. 34.
    Chen JS, Noah EM, Pallua N, Steffens GC (2002) The use of bifunctional polyethyleneglycol derivatives for coupling of proteins to and cross-linking of collagen matrices. J Mater Sci Mater Med. 13 (11):1029–35.Google Scholar
  35. 35.
    Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA. 2000;97(7):3422–7. doi: 10.1073/pnas.070046397.CrossRefGoogle Scholar
  36. 36.
    Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H, Onitsuka I, Matsui K, Imaizumi T. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000;105(11):1527–36. doi: 10.1172/JCI8296.CrossRefGoogle Scholar
  37. 37.
    Zhang HR, Chen FL, Xu CP, Ping YF, Wang QL, Liang ZQ, Wang JM, Bian XW. Incorporation of endothelial progenitor cells into the neovasculature of malignant glioma xenograft. J Neurooncol. 2009;93(2):165–74. doi: 10.1007/s11060-008-9757-4.CrossRefGoogle Scholar
  38. 38.
    Casamassimi A, Balestrieri ML, Fiorito C, Schiano C, Maione C, Rossiello R, Grimaldi V, Del Giudice V, Balestrieri C, Farzati B, Sica V, Napoli C. Comparison between total endothelial progenitor cell isolation versus enriched Cd133+ culture. J Biochem. 2007;141(4):503–11. doi: 10.1093/jb/mvm060.CrossRefGoogle Scholar
  39. 39.
    Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52(11):2745–56. doi: 10.1172/JCI107470.CrossRefGoogle Scholar
  40. 40.
    Park SJ, Baek SH, Oh MK, Choi SH, Park EH, Kim NH, Shin JC, Kim IS. Enhancement of angiogenic and vasculogenic potential of endothelial progenitor cells by haptoglobin. FEBS Lett. 2009;583(19):3235–40. doi: 10.1016/j.febslet.2009.09.014.CrossRefGoogle Scholar
  41. 41.
    Kasimir MT, Rieder E, Seebacher G, Nigisch A, Dekan B, Wolner E, Weigel G, Simon P. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis. 2006;15(2):278–86. discussion 286Google Scholar
  42. 42.
    Assmann A, Delfs C, Munakata H, Schiffer F, Horstkotter K, Huynh K, Barth M, Stoldt VR, Kamiya H, Boeken U, Lichtenberg A, Akhyari P. Acceleration of autologous in vivo recellularization of decellularized aortic conduits by fibronectin surface coating. Biomaterials. 2013;34(25):6015–26. doi: 10.1016/j.biomaterials.2013.04.037.CrossRefGoogle Scholar
  43. 43.
    Dohmen PM, Ozaki S, Nitsch R, Yperman J, Flameng W, Konertz W. A tissue engineered heart valve implanted in a juvenile sheep model. Med Sci Monitor Int Med J Exp Clin Res. 2003;9(4):BR97–BR104.Google Scholar
  44. 44.
    Zhou J, Fritze O, Schleicher M, Wendel HP, Schenke-Layland K, Harasztosi C, Hu S, Stock UA. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. 2010;31(9):2549–54. doi: 10.1016/j.biomaterials.2009.11.088.CrossRefGoogle Scholar
  45. 45.
    Lai Y, Xie C, Zhang Z, Lu W, Ding J. Design and synthesis of a potent peptide containing both specific and non-specific cell-adhesion motifs. Biomaterials. 2010;31(18):4809–17. doi: 10.1016/j.biomaterials.2010.02.064.CrossRefGoogle Scholar
  46. 46.
    Shinkai A, Ito M, Anazawa H, Yamaguchi S, Shitara K, Shibuya M. Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. J Biol Chem. 1998;273(47):31283–8.CrossRefGoogle Scholar
  47. 47.
    Shibuya M. Vascular endothelial growth factor receptor-2: its unique signaling and specific ligand, VEGF-E. Cancer Sci. 2003;94(9):751–6.CrossRefGoogle Scholar
  48. 48.
    Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 2007;19(10):2003–12. doi: 10.1016/j.cellsig.2007.05.013.CrossRefGoogle Scholar
  49. 49.
    Lutolf MP, Tirelli N, Cerritelli S, Cavalli L, Hubbell JA. Systematic modulation of Michael-type reactivity of thiols through the use of charged amino acids. Bioconjugate Chem. 2001;12(6):1051–6.CrossRefGoogle Scholar
  50. 50.
    Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55. doi: 10.1038/nbt1055 CrossRefGoogle Scholar
  51. 51.
    Dohmen PM, Lembcke A, Hotz H, Kivelitz D, Konertz WF. Ross operation with a tissue-engineered heart valve. Ann Thorac Surg. 2002;74(5):1438–42.CrossRefGoogle Scholar
  52. 52.
    Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952–8.Google Scholar
  53. 53.
    Rocha V, Wagner JE Jr., Sobocinski KA, Klein JP, Zhang MJ, Horowitz MM, Gluckman E. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med. 2000;342(25):1846–54. doi: 10.1056/NEJM200006223422501.CrossRefGoogle Scholar
  54. 54.
    Schmidt D, Breymann C, Weber A, Guenter CI, Neuenschwander S, Zund G, Turina M, Hoerstrup SP. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg. 2004;78(6):2094–8. doi: 10.1016/j.athoracsur.2004.06.052.CrossRefGoogle Scholar
  55. 55.
    Avci-Adali M, Paul A, Ziemer G, Wendel HP. New strategies for in vivo tissue engineering by mimicry of homing factors for self-endothelialisation of blood contacting materials. Biomaterials. 2008;29(29):3936–45. doi: 10.1016/j.biomaterials.2008.07.002.CrossRefGoogle Scholar
  56. 56.
    Sales VL, Mettler BA, Engelmayr GC Jr., Aikawa E, Bischoff J, Martin DP, Exarhopoulos A, Moses MA, Schoen FJ, Sacks MS, Mayer JE Jr. Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves. Tissue Eng Part A. 2010;16(1):257–67. doi: 10.1089/ten.TEA.2009.0424.CrossRefGoogle Scholar
  57. 57.
    Yang HN, Park JS, Woo DG, Jeon SY, Park KH. Transfection of VEGF(165) genes into endothelial progenitor cells and in vivo imaging using quantum dots in an ischemia hind limb model. Biomaterials. 2012;33(33):8670–84. doi: 10.1016/j.biomaterials.2012.08.012.CrossRefGoogle Scholar
  58. 58.
    Ye X, Wang H, Zhou J, Li H, Liu J, Wang Z, Chen A, Zhao Q. The effect of Heparin-VEGF multilayer on the biocompatibility of decellularized aortic valve with platelet and endothelial progenitor cells. PloS One. 2013;8(1):e54622 doi: 10.1371/journal.pone.0054622.CrossRefGoogle Scholar
  59. 59.
    Suh W, Kim KL, Choi JH, Lee YS, Lee JY, Kim JM, Jang HS, Shin IS, Lee JS, Byun J, Jeon ES, Kim DK. C-reactive protein impairs angiogenic functions and decreases the secretion of arteriogenic chemo-cytokines in human endothelial progenitor cells. Biochem Biophys Res Commun. 2004;321(1):65–71. doi: 10.1016/j.bbrc.2004.06.107.CrossRefGoogle Scholar
  60. 60.
    Xing F, Jiang Y, Liu J, Zhao K, Mo Y, Qin Q, Wang J, Ouyang J, Zeng Y. Role of AP1 element in the activation of human eNOS promoter by lysophosphatidylcholine. J Cell Biochem. 2006;98(4):872–84. doi: 10.1002/jcb.20739.CrossRefGoogle Scholar
  61. 61.
    Yang Z, Tao J, Wang JM, Tu C, Xu MG, Wang Y, Pan SR. Shear stress contributes to t-PA mRNA expression in human endothelial progenitor cells and nonthrombogenic potential of small diameter artificial vessels. Biochem Biophys Res Commun. 2006;342(2):577–84. doi: 10.1016/j.bbrc.2006.01.172.CrossRefGoogle Scholar
  62. 62.
    Fang NT, Xie SZ, Wang SM, Gao HY, Wu CG, Pan LF. Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells. Chin Med J. 2007;120(8):696–702.Google Scholar
  63. 63.
    Kan WH, Hsu JT, Ba ZF, Schwacha MG, Chen J, Choudhry MA, Bland KI, Chaudry IH. p38 MAPK-dependent eNOS upregulation is critical for 17beta-estradiol-mediated cardioprotection following trauma-hemorrhage. Am J Physiol Heart Circ Physiol. 2008;294(6):H2627–H2636. doi: 10.1152/ajpheart.91444.2007.CrossRefGoogle Scholar
  64. 64.
    Sawada N, Salomone S, Kim HH, Kwiatkowski DJ, Liao JK. Regulation of endothelial nitric oxide synthase and postnatal angiogenesis by Rac1. Circ Res. 2008;103(4):360–8. doi: 10.1161/CIRCRESAHA.108.178897.CrossRefGoogle Scholar
  65. 65.
    Schoen FJ. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 2008;118(18):1864–80. doi: 10.1161/circulationaha.108.805911.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jianliang Zhou
    • 1
    Email author
  • Jingli Ding
    • 2
  • Bin’en Nie
    • 3
  • Shidong Hu
    • 1
  • Zhigang Zhu
    • 1
  • Jia Chen
    • 1
  • Jianjun Xu
    • 1
  • Jiawei Shi
    • 4
  • Nianguo Dong
    • 4
    Email author
  1. 1.Department of Cardiothoracic Surgerythe Second Affiliated Hospital of Nanchang UniversityNanchangChina
  2. 2.Department of Gastroenterologythe Second Affiliated Hospital of Nanchang UniversityNanchangChina
  3. 3.Shanghai Key Laboratory of Orthopedic ImplantsDepartment of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
  4. 4.Department of Cardiovascular Surgerythe Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and TechnologyWuhanChina

Personalised recommendations