Skip to main content
Log in

Tailoring room temperature d0 ferromagnetism, dielectric, optical, and transport properties in Ag-doped rutile TiO2 compounds for spintronics applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Of late, d0 ferromagnetic oxide materials have been studied as potential material for spintronics application. We investigate the crystal structure, magnetic, optical, and dielectric properties of Ag-doped TiO2 compounds. XRD study reveals polycrystalline rutile form of TiO2 with tetragonal-type structure. SEM micrographs show spherical particles of size 2–3 µm. All the compounds exhibit ferromagnetism with Curie temperature beyond 400 K and with a typical coercivity value in the range 130–550 Oe. The bifurcation of ZFC and FC MT curves points out magnetic irreversibility. All Ag-doped TiO2 compounds exhibited p-type conductivity as per the Hall effect study. Optical absorbance data indicate the widening of the band gap up to 6% of Ag doping followed by a decrease for higher doping and these materials exhibit transmittance in the range of 20–30%. The compounds exhibit zero dielectric loss and appreciable dielectric constant and their AC conductivity increases with Ag doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statements

The data that support the findings of this study are available within the article.

References

  1. A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Diény, P. Pirro, B. Hillebrands, J. Magn. Magn. Mater. 509, 166711 (2020)

    CAS  Google Scholar 

  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    CAS  Google Scholar 

  3. Y. Matsumoto, M. Murakami, T. Shono et al., Science 291, 854–856 (2001)

    CAS  Google Scholar 

  4. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988–990 (2001)

    CAS  Google Scholar 

  5. S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lo Fland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson et al., Phys. Rev. Lett. 91, 077205 (2003)

    CAS  Google Scholar 

  6. X.L. Wang, Z.X. Dai, Z. Zeng, J. Phys.: Condens. Matter 20, 045214 (2008)

    Google Scholar 

  7. S.K. Srivastava, R. Brahma, S. Datta, S. Guha, Aakansha, S.S. Baro, B. Narzary, D.R. Basumatary, M. Kar, S. Ravi, Mater. Res. Express 6, 126107 (2019)

    CAS  Google Scholar 

  8. J.D. Bryan, S.M. Heald, S.A. Chambers, D.R. Gamelin, J. Am. Chem. Soc. 126, 11640 (2004)

    CAS  Google Scholar 

  9. S.K. Srivastava, P. Lejay, B. Barbara, O. Boisron, S. Pailhès, G. Bouzerar, J. Appl. Phys. 110, 043929 (2011)

    Google Scholar 

  10. S.K. Srivastava, J. Supercond. Nov. Magn. 33, 2501 (2020)

    CAS  Google Scholar 

  11. T. Dietl, Nat. Mater. 9, 965 (2010)

    CAS  Google Scholar 

  12. W.-Z. Xiao, L.-L. Wang, L. Xu, X.-F. Li, H.-Q. Deng, Phys. Status Solidi B 248, 1961 (2011)

    CAS  Google Scholar 

  13. W.-Z. Xiao, L.-L. Wang, Z. Tan, Comput. Mater. Sci. 83, 5 (2014)

    CAS  Google Scholar 

  14. W. Wei, Y. Dai, M. Guo, K. Lai, B. Huang, J. Appl. Phys. 108, 093901 (2010)

    Google Scholar 

  15. L. Shen, R.Q. Wu, H. Pan, G.W. Peng, M. Yang, Z.D. Sha, Y.P. Feng, Phys. Rev. B (2008). https://doi.org/10.1103/PhysRevB.78.073306

    Article  Google Scholar 

  16. X. Guan, N. Cai, C. Yang, J. Chen, P. Lu, Thin Solid Films 605, 273 (2016)

    CAS  Google Scholar 

  17. G. Bouzerar, T. Ziman, Phys. Rev. Lett. 96, 207602 (2006)

    Google Scholar 

  18. F. Máca, J. Kudrnovský, V. Drchal, G. Bouzerar, Appl. Phys. Lett. 92, 212503 (2008)

    Google Scholar 

  19. Y. Xie, A.-N. Zhou, Y.-T. Zhang, Y.-P. Huo, S.-F. Wang, J.-M. Zhang, J. Magn. Magn. Mater. 389, 90 (2015)

    CAS  Google Scholar 

  20. P. Mavropoulos, M. Ležaić, S. Blügel, Phys. Rev. B 80, 184403 (2009)

    Google Scholar 

  21. H. Wu, A. Stroppa, S. Sakong, S. Picozzi, M. Scheffler, P. Kratzer, Phys. Rev. Lett. 105, 267203 (2010)

    Google Scholar 

  22. F. Máca, J. Kudrnovský, V. Drchal, G. Bouzerar, Philos. Mag. 88, 2755 (2008)

    Google Scholar 

  23. Y. Liu, W. Zhou, P. Wu, J. Appl. Phys. 115, 123913 (2014)

    Google Scholar 

  24. H. Luitel, D. Sanyal, Int. J. Mod. Phys. B 31, 1750227 (2017)

    CAS  Google Scholar 

  25. S. Roy, H. Luitel, D. Sanyal, Comput. Condens. Matter 18, e00349 (2019)

    Google Scholar 

  26. S.K. Srivastava, P. Lejay, A. Hadj-Azzem, G. Bouzerar, J. Supercond. Nov. Magn. 27, 487 (2013)

    Google Scholar 

  27. S.K. Srivastava, P. Lejay, B. Barbara, S. Pailhès, V. Madigou, G. Bouzerar, Phys. Rev. B 82, 193203 (2010)

    Google Scholar 

  28. L. Chouhan, S.K. Panda, S. Bhattacharjee, B. Das, A. Mondal, B.N. Parida, R. Brahma, M.K. Manglam, M. Kar, G. Bouzerar, S.K. Srivastava, J. Alloys Compd. 870, 159515 (2021)

    CAS  Google Scholar 

  29. N. Hoa Hong, J.-H. Song, A.T. Raghavender, T. Asaeda, M. Kurisu, Appl. Phys. Lett. 99, 052505 (2011)

    Google Scholar 

  30. X. Liu, J. Iqbal, Z. Wu, B. He, R. Yu, J. Phys. Chem. C 114, 4790 (2010)

    CAS  Google Scholar 

  31. J. Wang, D. Zhou, Y. Li, P. Wu, Vacuum 141, 62–67 (2017)

    CAS  Google Scholar 

  32. P. Wu, B.Z. Zhou, W. Zhou, Appl. Phys. Lett. 100, 182405 (2012)

    Google Scholar 

  33. S. Chawla, K. Jayanthi, R.K. Kotnala, J. Appl. Phys. 106, 113923 (2009)

    Google Scholar 

  34. L. Chouhan, G. Bouzerar, S.K. Srivastava, J. Mater. Sci.: Mater. Electron. 32, 6389–6397 (2021)

    CAS  Google Scholar 

  35. L. Chouhan, G. Bouzerar, S.K. Srivastava, Vacuum 182, 109716 (2020)

    CAS  Google Scholar 

  36. M.C. Dimri, H. Khanduri, H. Kooskora, M. Kodu, R. Jaaniso, I. Heinmaa, A. Mere, J. Krustok, R. Stern, J. Phys. D: Appl. Phys. 45, 475003 (2012)

    Google Scholar 

  37. D.L. Hou, H.J. Meng, L.Y. Jia, X.J. Ye, H.J. Zhou, X.L. Li, Europhys. Lett. 78, 67001 (2007)

    Google Scholar 

  38. L. Chouhan, G. Bouzerar, S.K. Srivastava, J. Mater. Sci.: Mater. Electron. 32, 11193 (2021)

    CAS  Google Scholar 

  39. X.J. Ye, W. Zhong, M.H. Xu, X.S. Qi, C.T. Au, Y.W. Du, Phys. Lett. A 373, 3684 (2009)

    CAS  Google Scholar 

  40. S.K. Srivastava, P. Lejay, B. Barbara, O. Boisron, S. Pailhès, G. Bouzerar, J. Phys.: Condens. Matter 23, 442202 (2011)

    CAS  Google Scholar 

  41. Y. Chen, E. Stathatos, D.D. Dionysiou, Surf. Coat. Technol. 202, 1944 (2008)

    CAS  Google Scholar 

  42. P. Du, A. Bueno-López, M. Verbaas, A.R. Almeida, M. Makkee, J.A. Moulijn, G. Mul, J. Catal. 260, 75 (2008)

    CAS  Google Scholar 

  43. L.-C. Chen, F.-R. Tsai, S.-H. Fang, Y.-C. Ho, Electrochim. Acta 54, 1304 (2009)

    CAS  Google Scholar 

  44. A.J. Haider, Z.N. Jameel, I.H.M. Al-Hussaini, Energy Procedia 157, 17 (2019)

    CAS  Google Scholar 

  45. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    CAS  Google Scholar 

  46. R.A. Young, The Rietveld Method (International Union of Crystallography), Reprint, 1st edn. (Oxford University Press, New York, 1996)

    Google Scholar 

  47. J. Rodriguez-Carvajal, Phys. B: Condens. Matter. 192, 55 (1993)

    CAS  Google Scholar 

  48. S.K. Srivastava, M. Kar, S. Ravi, J. Magn. Magn. Mater. 307, 318 (2006)

    CAS  Google Scholar 

  49. S.K. Srivastava, M. Kar, S. Ravi, J. Phys.: Condens. Matter 20, 505212 (2008)

    Google Scholar 

  50. S.K. Srivastava, M. Kar, S. Ravi, J. Magn. Magn. Mater. 320, 107 (2008)

    Google Scholar 

  51. S.U. Awan, S.K. Hasanain, M.F. Bertino, G.H. Jaffari, J. Appl. Phys. 112, 103924 (2012)

    Google Scholar 

  52. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    CAS  Google Scholar 

  53. S. Munir, S.M. Shah, H. Hussain, R. Ali Khan, Mater. Des. 92, 64–72 (2016)

    CAS  Google Scholar 

  54. S.I. Mogal, V.G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P.A. Joshi, D.O. Shah, Ind. Eng. Chem. Res. 53, 5749–5758 (2014)

    CAS  Google Scholar 

  55. X. Wang, Y. Song, L.L. Tao, J.F. Feng, Y. Sui, J. Tang, B. Song, Y. Wang, Y. Wang, Y. Zhang, X.F. Han, Appl. Phys. Lett 105, 262402 (2014)

    Google Scholar 

  56. C.G. Koops, Phys. Rev. 83, 121 (1951)

    CAS  Google Scholar 

  57. S.M. Zhou, Y.S. Feng, L.D. Zhang, Chem. Phys. Lett. 369, 610 (2003)

    CAS  Google Scholar 

  58. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972)

    CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, L., Narzary, R., Dey, B. et al. Tailoring room temperature d0 ferromagnetism, dielectric, optical, and transport properties in Ag-doped rutile TiO2 compounds for spintronics applications. J Mater Sci: Mater Electron 32, 28163–28175 (2021). https://doi.org/10.1007/s10854-021-07194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07194-6

Navigation