Skip to main content
Log in

Solid-phase synthesis and study of the structural, optical, and photocatalytic properties of the ATiO3, A = Ca, Sr, Ba ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents the results of a study of the structural, optical, and photocatalytic properties of ceramics based on ATiO3 titanates, A = Ca, Sr, Ba. Using the method of X-ray phase analysis, it was found that in the case of ceramics obtained from a mixture of BaCO3 and TiO2 after annealing, the structure is a mixture of two phases, rhombohedral BaTiO3 and impurity orthorhombic BaTi4O9. In the case of ceramics obtained from a mixture of CaCO3 and TiO2, the structure is a mixture of two phases of the orthorhombic phase and rutile TiO2. In the case of ceramics obtained from a mixture of SrCO3 and TiO2, the structure is a mixture of two phases of the SrTiO3 orthorhombic phase and the Ti2O5 orthorhombic phase. At the same time, all synthesized ceramics have a high crystallinity degree and order of the crystal structure. An analysis of the optical properties showed that the main changes are associated with the difference in the band gap, which is due to the presence of different phases in the structure of ceramics. Based on the results of photocatalytic reactions, the order of photocatalytic activity of the synthesized ceramics was determined: SrTO3/T2O5 > CaTO3/TO2 > BaTO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wenjia Song et al., High-throughput measurement of the influence of pH on hydrogen production from BaTiO3/TiO2 core/shell photocatalysts. Appl. Catal. B: Environ. 269, 118750 (2020)

    Article  CAS  Google Scholar 

  2. Bian Yang et al., When C3N4 meets BaTiO3: ferroelectric polarization plays a critical role in building a better photocatalyst. Ceram. Int. 46(4), 4248–4255 (2020)

    Article  CAS  Google Scholar 

  3. N.V. Gaponenko et al., Enhanced luminescence of europium in sol-gel derived BaTiO3/SiO2 multilayer cavity structure. Opt. Mater. 96, 109265 (2019)

    Article  CAS  Google Scholar 

  4. Yanping Wang et al., Photocatalytic application of Ag-decorated CuS/BaTiO 3 composite photocatalysts for degrading RhB. J. Electron. Mater. 50, 2674–2686 (2021)

    Article  CAS  Google Scholar 

  5. M.V. Zdorovets, A.L. Kozlovskiy, Study of the effect of La3+ doping on the properties of ceramics based on BaTiOx. Vacuum 168, 108838 (2019)

    Article  CAS  Google Scholar 

  6. M.A. Almessiere et al., The effect of Nb substitution on magnetic properties of BaFe12O19 nanohexaferrites. Ceram. Int. 45(2), 1691–1697 (2019)

    Article  CAS  Google Scholar 

  7. Gopal Prasad Khanal et al., Effect of thermal annealing on crystal structures and electrical properties in BaTiO3 ceramics. J. Appl. Phys. 124.3, 034102 (2018)

    Article  Google Scholar 

  8. Peng-Jian. Wang et al., Significantly enhanced electrostatic energy storage performance of P (VDF-HFP)/BaTiO3-Bi (Li0.5Nb0.5) O3 nanocomposites. Nano Energy 78, 1047 (2020)

    Google Scholar 

  9. Myang Hwan Lee et al., Thermal quenching effects on the ferroelectric and piezoelectric properties of BiFeO3–BaTiO3 ceramics. ACS Appl. Electron. Mater. 19, 1772–1780 (2019)

    Article  Google Scholar 

  10. V.A. Ketsko et al., Specifics of pyrohydrolytic and solid-phase syntheses of solid solutions in the (MgGa 2 O 4) × (MgFe 2 O 4) 1–x system. Russ. J. Inorg. Chem. 55(3), 427–429 (2010)

    Article  CAS  Google Scholar 

  11. Gillian M. Keith et al., Synthesis and characterisation of doped 6H-BaTiO3 ceramics. J. Eur. Ceram. Soc. 24.6, 1721–1724 (2004)

    Article  Google Scholar 

  12. Pengrong Ren et al., Origin of enhanced depolarization temperature in quenched Na0.5Bi0.5TiO3-BaTiO3 ceramics. J. Eur. Ceram. Soc. 40, 2964–2969 (2020)

    Article  CAS  Google Scholar 

  13. Peng-Jian. Wang et al., Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core–shell BaTiO 3@ MgO structures as the filler. J. Mater. Chem. A 8.22, 11124–11132 (2020)

    Article  Google Scholar 

  14. H.M. Al-Allak et al., The effect of Mn on the positive temperature coefficient of resistance characteristics of donor doped BaTiO3 ceramics. J. Appl. Phys. 63(9), 4530–4535 (1988)

    Article  CAS  Google Scholar 

  15. Hiroshi Maiwa, Electromechanical properties of BaTiO3 ceramics prepared by spark plasma sintering and other methods. Jpn. J. Appl. Phys. 48.9S1, 09JD04 (2009)

    Google Scholar 

  16. Vishvendra Pratap Singh, Moolchand Sharma, Rahul Vaish, Enhanced dye adsorption and rapid photocatalysis of candle soot coated BaTiO3 ceramics. Mater. Chem. Phys. 252, 1211 (2020)

    Article  Google Scholar 

  17. Mrinal K. Adak et al., Ferroelectric and photocatalytic behavior of Mn-and Ce-doped BaTiO3 nanoceramics prepared by chemical route. Mater. Sci. Eng.: B 262, 100 (2020)

    Article  Google Scholar 

  18. Sandeep Kumar et al., Impact of remnant surface polarization on photocatalytic and antibacterial performance of BaTiO3. J. Eur. Ceram. Soc. 399, 2915–2922 (2019)

    Article  Google Scholar 

  19. İsmail Cihan Kaya, Volkan Kalem, Hasan Akyildiz, Hydrothermal synthesis of pseudocubic BaTiO3 nanoparticles using TiO2 nanofibers: study on photocatalytic and dielectric properties. Int. J. Appl. Ceram. Technol. 164, 1557–1569 (2019)

    Article  Google Scholar 

  20. Bo. Niu, Xu. Zhenming, Innovating e-waste recycling: from waste multi-layer ceramic capacitors to NbPb codoped and ag-Pd-Sn-Ni loaded BaTiO3 nano-photocatalyst through one-step ball milling process. Sustain. Mater. Technol. 21, e00101 (2019)

    CAS  Google Scholar 

  21. Lijie Mi et al., Synthesis of BaTiO3 nanoparticles by sol-gel assisted solid phase method and its formation mechanism and photocatalytic activity. Ceram. Int. 46.8, 10619–10633 (2020)

    Article  Google Scholar 

  22. P. Vitanov et al., Deposition, structure evolution and dielectric properties of BaTiO3 and BaxSr1− xTiO3 thin films prepared by the sol–gel method. Vacuum 69(1–3), 371–377 (2002)

    Article  CAS  Google Scholar 

  23. T.S. Soliman et al., The structure and optical properties of PVA-BaTiO3 nanocomposite films. Opt. Mater. 111, 110648 (2021)

    Article  CAS  Google Scholar 

  24. P. Suresh, P. Mathiyalagan, K.S. Srikanth, Structural, ferroelectric and photocatalytic performance of Ba1-xCaxTiO3 ceramics. Ferroelectrics 555(1), 74–87 (2020)

    Article  CAS  Google Scholar 

  25. U. Holzwarth, N. Gibson, The Scherrer equation versus the’Debye-Scherrer equation’. Nat. Nanotechnol. 6(9), 534–534 (2011)

    Article  CAS  Google Scholar 

  26. Shifa Wang et al., Microstructure, optical, photoluminescence properties and the intrinsic mechanism of photoluminescence and photocatalysis for the BaTiO3, BaTiO3/TiO2 and BaTiO3/TiO2/CeO2 smart composites. Opt. Mater. 118, 111273 (2021)

    Article  CAS  Google Scholar 

  27. M.I. Sayyed et al., Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J. Non-Cryst. Solids 507, 30–37 (2019)

    Article  CAS  Google Scholar 

  28. Yanping Wang et al., Photocatalytic purification of simulated dye wastewater in different pH environments by using BaTiO3/Bi2WO6 heterojunction photocatalysts. Opt. Mater. 113, 110853 (2021)

    Article  CAS  Google Scholar 

  29. Tariq R. Sobahi, M.S. Amin, Photocatalytic oxidation of atrazine using BaTiO3-MWCNT nanocomposites under visible light. Ceram. Int. 47.10, 14366–14374 (2021)

    Article  Google Scholar 

  30. Min Chen et al., Synthesis and photocatalytic activity of Na+ co-doped CaTiO3: Eu3+ photocatalysts for methylene blue degradation. Ceram. Int. 46.8, 12111–12119 (2020)

    Article  Google Scholar 

  31. Shinya Otsuka-Yao-Matsuo et al., Photobleaching of methylene blue aqueous solution sensitized by composite powders of titanium oxide with SrTiO3, BaTiO3, and CaTiO3. Mater. Trans. 44.10, 2124–2129 (2003)

    Article  Google Scholar 

  32. Weixia Dong et al., Effects of morphologies on the photocatalytic properties of CaTiO3 nano/microstructures. J. Ceram. Soc. Jpn. 124, 475–479 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (No. AP09259182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kozlovskiy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakozov, B.K., Kozlovskiy, A.L., Janseitov, D.M. et al. Solid-phase synthesis and study of the structural, optical, and photocatalytic properties of the ATiO3, A = Ca, Sr, Ba ceramic. J Mater Sci: Mater Electron 32, 24436–24445 (2021). https://doi.org/10.1007/s10854-021-06921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06921-3

Navigation