Skip to main content
Log in

Photocatalytic Application of Ag-Decorated CuS/BaTiO3 Composite Photocatalysts for Degrading RhB

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Herein, binary CuS/BTO and ternary CuS/Ag/BTO composite photocatalysts have been fabricated by anchoring CuS and Ag nanoparticles onto BaTiO3 (BTO) polyhedra. The as-prepared composite photocatalysts were characterized by means of the techniques of transmission/scanning electron microscopy, x-ray powder diffraction, ultraviolet–visible diffuse reflectance spectroscopy, x-ray photoelectron spectroscopy and photoluminescence spectroscopy. Transient photocurrent and electrochemical impedance spectroscopy measurements suggest that the ternary 5%CuS/(1%Ag/BTO) composite possesses the highest separation efficiency of electron/hole pairs. The photodegradation experiments were conducted by using simulated sunlight as the light source to decompose Rhodamine B in water solution. The 5%CuS/(1%Ag/BTO) and 5%CuS/BTO composites are demonstrated to have the highest and second highest photodegradation activity, respectively. As compared with that of bare BaTiO3 and CuS, the photoactivity of 5%CuS/(1%Ag/BTO) is increased to 3.3 and 2.0 times, respectively. The electron/hole separation mechanism and the role of localized surface plasmon resonance of Ag nanoparticles in the dye photodegradaton were systematically investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z.M. He, Y.M. Xia, J.B. Su, and B. Tang, Opt. Mater., 88, 195 (2019).

    CAS  Google Scholar 

  2. S.F. Wang, Y. Wang, H.J. Gao, J.Y. Li, L.M. Fang, X.L. Yu, S.N. Tang, and X.X. Zhao, Optik, 221, 165363 (2020).

    CAS  Google Scholar 

  3. Y.X. Yan, H. Yang, X.X. Zhao, H.M. Zhang, and J.L. Jiang, J. Electron. Mater., 47, 3045 (2018).

    CAS  Google Scholar 

  4. C. Berberidou, V. Kitsiou, D.A. Lambropoulou, A. Antoniadis, E. Ntonou, G.C. Zalidis, and I. Poulios, J. Environ. Manag., 195, 133 (2017).

    CAS  Google Scholar 

  5. J.Y. Li, S.F. Wang, G. Sun, H.J. Gao, X.L. Yu, S.N. Tang, X.X. Zhao, Z. Yi, Y. Wang, and Y. Wei, Mater. Today Chem., 19, 100390 (2021).

    CAS  Google Scholar 

  6. S.Y. Wang, H. Yang, Z. Yi, and X.X. Wang, J. Environ. Manag., 248, 109341 (2019).

    CAS  Google Scholar 

  7. M. Ahmadi, H.R. Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, and S. Jorfi, J. Environ. Manag., 186, 55 (2017).

    CAS  Google Scholar 

  8. Q.Q. Duan, J.Y. Jia, X. Hong, Y.C. Fu, C.Y. Wang, K. Zhou, X.Q. Liu, H. Yang, and Z.Y. Wang, Sol. Energy, 201, 555 (2020).

    CAS  Google Scholar 

  9. Y.M. Xia, Z.M. He, J.B. Su, and K.J. Hu, J. Mater. Sci.-Mater. Electron., 30, 9843 (2019).

    CAS  Google Scholar 

  10. S.T. Guan, H. Yang, X.F. Sun, and T. Xian, Opt. Mater., 100, 109644 (2020).

    CAS  Google Scholar 

  11. K. Kaur, R. Badru, P.P. Singh, and S. Kaushal, J. Environ. Chem. Eng., 8, 103666 (2020).

    Google Scholar 

  12. T. Xian, X.F. Sun, L.J. Di, H.Q. Li, and H. Yang, Opt. Mater., 111, 110614 (2021).

    CAS  Google Scholar 

  13. H.J. Gao, X.X. Zhao, H.M. Zhang, J.F. Chen, S.F. Wang, and H. Yang, J. Electron. Mater., 49, 5248 (2020).

    CAS  Google Scholar 

  14. M. Karmaoui, L. Lajaunie, D.M. Tobaldi, G. Leonardi, C. Benbayer, R. Arenal, and J.A. Labrincha, Appl. Catal. B-Environ., 218, 370 (2017).

    CAS  Google Scholar 

  15. H.J. Gao, F. Wang, S.F. Wang, X.X. Wang, Z. Yi, and H. Yang, Mater. Res. Bull., 115, 140 (2019).

    CAS  Google Scholar 

  16. M. Rastogi, C. Bowen, H.S. Kushwaha, and R. Vaish, Mater. Sci. Semicond. Proc., 51, 33 (2016).

    CAS  Google Scholar 

  17. P.Q. Yu, H. Yang, X.F. Chen, Z. Yi, W.T. Yao, J.F. Chen, Y.G. Yi, and P.H. Wu, Renew. Energy, 158, 227 (2020).

    CAS  Google Scholar 

  18. L.Y. Jiang, C. Yuan, Z.Y. Li, J. Su, Z. Yi, W.T. Yao, P.P. Wu, Z.M. Liu, S.B. Cheng, and M. Pan, Diam. Relat. Mater., 111, 108227 (2021).

    CAS  Google Scholar 

  19. S.U. Lu, L. Xia, J.M. Xu, C.H. Ding, T.T. Li, H. Yang, B. Zhong, T. Zhang, L.N. Huang, L. Xiong, X.X. Huang, and G.W. Wen, ACS Appl. Mater. Interfaces, 11, 18626 (2019).

    CAS  Google Scholar 

  20. G.S. Ma, Y.B. Chen, L. Xia, Y.F. Zhan, B. Zhong, H. Yang, L.N. Huang, L. Xiong, X.X. Huang, and G.W. Wen, Ceram. Int., 46, 10903 (2020).

    CAS  Google Scholar 

  21. X.X. Wang, J.K. Zhu, H. Tong, X.D. Yang, X.X. Wu, Z.Y. Pang, H. Yang, and Y.P. Qi, Chin. Phys. B, 28, 044201 (2019).

    CAS  Google Scholar 

  22. X.X. Wang, Y. Wu, X.L. Wen, J.K. Zhu, X.L. Bai, Y.P. Qi, and H. Yang, Opt. Quantum Electron., 52, 238 (2020).

    CAS  Google Scholar 

  23. K. Saeed, N. Zada, and I. Khan, Sep. Sci. Technol., 54, 2729 (2019).

    CAS  Google Scholar 

  24. S.F. Wang, H.J. Gao, X.L. Yu, S.N. Tang, Y. Wang, L.M. Fang, X.X. Zhao, J.Y. Li, L. Yang, and W.Q. Dang, J. Mater Sci. Mater. Electron., 31, 17736 (2020).

    Google Scholar 

  25. X.X. Zhao, H. Yang, S.H. Li, Z.M. Cui, and C.R. Zhang, Mater. Res. Bull., 107, 180 (2018).

    CAS  Google Scholar 

  26. F. Cordero, F. Cordero, J. Appl. Phys., 123, 094103 (2018).

    Google Scholar 

  27. A.A. Yadav, Y.M. Hunge, V.L. Mathe, and S.B. Kulkarni, J. Mater. Sci.-Mater. Electron., 29, 15069 (2018).

    CAS  Google Scholar 

  28. S. Kumar, M. Sharma, S. Powar, E.N. Kabachkov, and R. Vaish, J. Eur. Ceram. Soc., 39, 2915 (2019).

    CAS  Google Scholar 

  29. Y.B. Zhang, Z. Yi, X.Y. Wang, P.X. Chu, W.T. Yao, Z.G. Zhou, S.B. Cheng, Z.M. Liu, P.H. Wu, M. Pan, and Y.G. Yi, Phys. E, 127, 114526 (2021).

    CAS  Google Scholar 

  30. Z. Yi, J.K. Li, J.C. Lin, F. Qin, X.F. Chen, W.T. Yao, Z.M. Liu, S.B. Cheng, P.H. Wu, and H.L. Li, Nanoscale, 12, 23077 (2020).

    CAS  Google Scholar 

  31. Z. Hosseinpour, A. Alemi, A.A. Khandar, X. Zhao, and Y. Xie, New J. Chem., 39, 5470 (2015).

    CAS  Google Scholar 

  32. J. Kundu and D. Pradhan, ACS Appl. Mater. Interfaces, 6, 1823 (2014).

    CAS  Google Scholar 

  33. Y.P. Wang, H. Yang, X.F. Sun, H.M. Zhang, and T. Xian, Mater. Res. Bull., 124, 110754 (2020).

    CAS  Google Scholar 

  34. T.A. Kurniawan, Y.Y. Lin, O. Tong, A.B. Albadarin, and G. Walker, Mater. Sci. Semicond. Proc., 73, 42 (2018).

    CAS  Google Scholar 

  35. P.M. Nithya, and L.G. Devi, Surf. Interfaces, 15, 205 (2019).

    CAS  Google Scholar 

  36. M. Basu, N. Garg, and A.K. Ganguli, J. Mater. Chem. A, 2, 7517 (2014).

    CAS  Google Scholar 

  37. M. Basu, R. Nazir, P. Fageria, and S. Pande, Sci. Rep., 6, 34738 (2016).

    CAS  Google Scholar 

  38. S.T. Guan, R.S. Li, X.F. Sun, T. Xian, and H. Yang, Mater. Technol. https://doi.org/10.1080/10667857.2020.1782062 (2020).

    Article  Google Scholar 

  39. P.X. Chu, J.X. Chen, Z.G. Xiong, and Z. Yi, Opt. Commun, 476, 126338 (2020).

    CAS  Google Scholar 

  40. X.X. Wang, J.K. Zhu, Y.Q. Xu, Y.P. Qi, L.P. Zhang, H. Yang, and Z. Yi, Chinese Phys. B, 30, 024207 (2021).

    Google Scholar 

  41. X.F. Sun, L.J. Di, T. Xian, Y.J. Zhou, H.Q. Li, Y.S. Gao, and H. Yang, J. Mater. Sci.-Mater. Electron. https://doi.org/10.1007/s10854-020-04844-z (2020).

    Article  Google Scholar 

  42. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).

    CAS  Google Scholar 

  43. S.F. Wang, H.J. Gao, G.Z. Sun, Y. Wang, L.M. Fang, L. Yang, L. Lei, and Y. Wei, Russ. J. Phys. Chem. A, 94, 1234 (2020).

    Google Scholar 

  44. M.R. Khalifeh, H. Shokrollahi, S.M. Arab, and H. Yang, Mater. Chem. Phys., 247, 122838 (2020).

    CAS  Google Scholar 

  45. L. Gomathi Devi, and P.M. Nithya, J. Environ. Chem. Eng., 6, 3565 (2018).

    Google Scholar 

  46. M. Golkari, H. Shokrollahi, and H. Yang, Ceram. Int., 46, 8553 (2020).

    CAS  Google Scholar 

  47. Y.P. Wang, X.F. Sun, T. Xian, G.R. Liu, and H. Yang, Opt. Mater., 113, 110853 (2021).

    CAS  Google Scholar 

  48. S.N. Tang, S.F. Wang, X.L. Yu, H.J. Gao, X.W. Niu, Y. Wang, X.X. Zhao, G.Z. Sun, and D.F. Li, Chem.Select, 5, 10599 (2020).

    CAS  Google Scholar 

  49. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, and R.S. Ruoff, Nano Lett., 8, 3498 (2008).

    CAS  Google Scholar 

  50. G. Corro, F. Banuelos, E. Vidal, and S. Cebada, Fuel, 115, 625 (2014).

    CAS  Google Scholar 

  51. Y. Bi, S. Ouyang, N. Umezawa, J. Cao, and J. Ye, J. Am. Chem. Soc., 133, 6490 (2011).

    CAS  Google Scholar 

  52. Y.M. Xia, Z.M. He, J.B. Su, S.Q. Zhu, and B. Tang, J. Electron. Mater., 49, 3259 (2020).

    CAS  Google Scholar 

  53. S.J. Hong, S. Lee, J.S. Jang, and J.S. Lee, Energy Environ. Sci., 4, 1781 (2011).

    CAS  Google Scholar 

  54. T.T. Cheng, X.F. Sun, T. Xian, Z. Yi, R.S. Li, X.X. Wang, and H. Yang, Opt. Mater., 112, 110781 (2021).

    CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 51662027) and the Scientific Research Fund of SiChuan Provincial Science and Technology Department (Grant No. 2020YJ0137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, R., Sun, X. et al. Photocatalytic Application of Ag-Decorated CuS/BaTiO3 Composite Photocatalysts for Degrading RhB. J. Electron. Mater. 50, 2674–2686 (2021). https://doi.org/10.1007/s11664-021-08787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08787-x

Keywords

Navigation