Skip to main content

Advertisement

Log in

Facile fabrication of bimetallic Fe2P–Ni2P heterostructure for boosted oxygen evolution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Developing high-efficient yet low-cost electrocatalysts is crucial for the electrochemical oxygen evolution reaction (OER). Here a universal strategy for the facile synthesis of bimetallic Fe2P–Ni2P heterostructure has been developed. And the catalytic activity of the obtained bimetallic heterostructure had further studied. The sample was obtained by hydrothermal method through mixing the nickel–iron precursors followed by direct phosphating annealing. The catalyst has flower ball morphology that provides a massive active surface area with more active sites. At the same time, the Fe2P–Ni2P bimetallic heterostructure sample has excellent OER catalytic performance under alkaline electrolyte with an overpotential of 317 mV to achieve the current density of 10 mA cm−2 in 1.0 M KOH solution and a low Tafel slope of 58.71 mV dec−1. This research proposes a general and economical method for the preparation of heterogeneous metal phosphide electrocatalysts toward the OER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I. Staffell, D. Scamman, A. Velazquez-Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019)

    Article  CAS  Google Scholar 

  2. C.G. Morales-Guio, L.A. Stern, X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014)

    Article  CAS  Google Scholar 

  3. K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010)

    Article  CAS  Google Scholar 

  4. J. Masud, A.T. Swesi, W.P.R. Liyanage, M. Nath, Cobalt selenide nanostructures: an efficient bifunctional catalyst with high current density at low Coverage. ACS Appl. Mater. Interfaces. 8, 17292–17302 (2016)

    Article  CAS  Google Scholar 

  5. G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen, X. Feng, Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 30, 1–7 (2018)

    Google Scholar 

  6. C. Xiao, J. Zhang, Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: a review. ACS Nano 15, 7975–8000 (2021)

    Article  CAS  Google Scholar 

  7. Y. Li, Z. Dong, L. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 10, 1–36 (2020)

    Google Scholar 

  8. Z. Lin, B.B. Xiao, Z. Wang, W. Tao, S. Shen, L. Huang, J. Zhang, F. Meng, Q. Zhang, L. Gu, W. Zhong, Planar-coordination PdSe2 nanosheets as highly active electrocatalyst for hydrogen evolution reaction. Adv. Funct. Mater. 2, 2102321 (2021)

    Article  CAS  Google Scholar 

  9. L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12, 1527–1536 (2016)

    Article  CAS  Google Scholar 

  10. G.F. Chen, T.Y. Ma, Z.Q. Liu, N. Li, Y.Z. Su, K. Davey, S.Z. Qiao, Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 26, 3314–3323 (2016)

    Article  CAS  Google Scholar 

  11. J.D. Costa, J.L. Lado, E. Carbó-Argibay, E. Paz, J. Gallo, M.F. Cerqueira, C. Rodríguez-Abreu, K. Kovnir, Y.V. KolenKo, Electrocatalytic performance and stability of nanostructured Fe-Ni pyrite-type diphosphide catalyst supported on carbon paper. J. Phys. Chem. C. 120, 16537–16544 (2016)

    Article  CAS  Google Scholar 

  12. S.H. Ahn, A. Manthiram, Direct growth of ternary Ni-Fe-P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting. J. Mater. Chem. A. 5, 2496–2503 (2017)

    Article  CAS  Google Scholar 

  13. Y. Feng, X.Y. Yu, U. Paik, Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation. Chem. Commun. 52, 6269–6272 (2016)

    Article  CAS  Google Scholar 

  14. A. Dutta, N. Pradhan, Developments of metal phosphides as efficient OER precatalysts. J. Phys. Chem. Lett. 8, 144–152 (2017)

    Article  CAS  Google Scholar 

  15. P. Liu, J.A. Rodriguez, Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 127, 14871–14878 (2005)

    Article  CAS  Google Scholar 

  16. H. Zhang, W. Zhou, J. Dong, X.F. Lu, X.W.D. Lou, Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy Environ. Sci. 12, 3348–3355 (2019)

    Article  CAS  Google Scholar 

  17. Y. Li, H. Zhang, M. Jiang, Q. Zhang, P. He, X. Sun, 3D Self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv. Funct. Mater. 27, 1–8 (2017)

    CAS  Google Scholar 

  18. F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin, J. Bao, W.A. Goddard, S. Chen, Z. Ren, High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9, 1–9 (2018)

    Article  CAS  Google Scholar 

  19. Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang, G. Shao, B. Tang, W. Yang, L. Qin, X. Fang, High-performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanoparticles for zinc-air battery and self-powered overall water splitting. Adv. Energy Mater. 10, 1903854 (2020)

    Article  CAS  Google Scholar 

  20. Y. Xin, X. Kan, L.Y. Gan, Z. Zhang, Heterogeneous bimetallic phosphide/sulfide nanocomposite for efficient solar-energy-driven overall water splitting. ACS Nano 11, 10303–10312 (2017)

    Article  CAS  Google Scholar 

  21. G. Zhao, Y. Jiang, S.X. Dou, W. Sun, H. Pan, Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci. Bull. 66, 85–96 (2021)

    Article  CAS  Google Scholar 

  22. X. Guo, X. Zheng, X. Hu, Q. Zhao, L. Li, P. Yu, C. Jing, Y. Zhang, G. Huang, B. Jiang, C. Xu, F. Pan, Electrostatic adsorbing graphene quantum dot into nickel–based layered double hydroxides: Electron absorption/donor effects enhanced oxygen electrocatalytic activity. Nano Energy 84, 105932 (2021)

    Article  CAS  Google Scholar 

  23. P.F. Liu, X. Li, S. Yang, M.Y. Zu, P. Liu, B. Zhang, L.R. Zheng, H. Zhao, H.G. Yang, Ni2P(O)/Fe2P(O) interface can boost oxygen evolution electrocatalysis. ACS Energy Lett. 2, 2257–2263 (2017)

    Article  CAS  Google Scholar 

  24. Y. Li, C. Zhao, Iron-doped nickel phosphate as synergistic electrocatalyst for water oxidation. Chem. Mater. 28, 5659–5666 (2016)

    Article  CAS  Google Scholar 

  25. L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen, Z. Ren, Heterogeneous bimetallic phosphide Ni2P–Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 31, 1–12 (2021)

    Google Scholar 

  26. S. Liu, L. Zheng, P. Yu, S. Han, X. Fang, Novel composites of α-Fe2O3 tetrakaidecahedron and graphene oxide as an effective photoelectrode with enhanced photocurrent performances. Adv. Funct. Mater. 26, 3331–3339 (2016)

    Article  CAS  Google Scholar 

  27. H. Zhang, A.W. Maijenburg, X. Li, S.L. Schweizer, R.B. Wehrspohn, Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater. 30, 1–31 (2020)

    Google Scholar 

  28. Z. Xing, Q. Liu, A.M. Asiri, X. Sun, Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 26, 5702–5707 (2014)

    Article  CAS  Google Scholar 

  29. K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, L. Sun, Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 7, 1–9 (2016)

    Google Scholar 

  30. X. Liang, H.W. Zheng, X.J. Li, Y.H. Yu, G.T. Yue, W. Zhang, J.J. Tian, T.F. Li, Nanocomposites of Bi5FeTi3O15 with MoS2 as novel Pt-free counter electrode in dye-sensitized solar cells. Ceram. Int. 42, 12888–12893 (2016)

    Article  CAS  Google Scholar 

  31. C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013)

    Article  CAS  Google Scholar 

  32. J. Lee, S.Y. Jun, T. Choi, D. Jung, J.S. Bae, S.A. Lee, W.S. Choi, Epitaxial strain dependent electrocatalytic activity in CaRuO3 thin films. Appl. Phys. Lett. 117, 163906 (2020)

    Article  CAS  Google Scholar 

  33. M.S. Burke, L.J. Enman, A.S. Batchellor, S. Zou, S.W. Boettcher, Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549–7558 (2015)

    Article  CAS  Google Scholar 

  34. L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, Z. Ren, Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 5106 (2019)

    Article  CAS  Google Scholar 

  35. Y. Wu, Y. Yi, Z. Sun, H. Sun, T. Guo, M. Zhang, L. Cui, K. Jiang, Y. Peng, J. Sun, Bimetallic Fe-Ni phosphide carved nanoframes toward efficient overall water splitting and potassium-ion storage. Chem. Eng. J. 390, 124515 (2020)

    Article  CAS  Google Scholar 

  36. Y.J. Tang, L. You, K. Zhou, Enhanced oxygen evolution reaction activity of a Co2P@NC-Fe2P composite boosted by interfaces between a N-doped carbon matrix and Fe2P microspheres. ACS Appl. Mater. Interfaces 12, 25884–25894 (2020)

    Article  CAS  Google Scholar 

  37. B. Zhang, Y.H. Lui, A.P.S. Gaur, B. Chen, X. Tang, Z. Qi, S. Hu, Hierarchical FeNiP@ultrathin carbon nanoflakes as alkaline oxygen evolution and acidic hydrogen evolution catalyst for efficient water electrolysis and organic decomposition. ACS Appl. Mater. Interfaces 10, 8739–8748 (2018)

    Article  CAS  Google Scholar 

  38. L. Zhang, C. Chang, C.W. Hsu, C.W. Chang, S.Y. Lu, Hollow nanocubes composed of well-dispersed mixed metal-rich phosphides in N-doped carbon as highly effiffifficient and durable electrocatalysts for the oxygen evolution reaction at high current densities. J. Mater. Chem. A 5, 19656–19663 (2017)

    Article  CAS  Google Scholar 

  39. L. Zheng, W. Hu, X. Shu, H. Zheng, X. Fang, Ultrafine CoPx nanoparticles anchored on nitrogen doped reduced graphene oxides for superior hydrogenation in alkaline media. Adv. Mater. Interfaces 5, 1800515 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key R&D Program of China (2017YFA0403503), National Natural Science Foundation of China (11674001), Open Fund for Discipline Construction, Institute of Physical Science and Information Technology (S01003103, Anhui University), the Doctoral research start-up funds projects of Anhui University (J01003201), Leading Talent Innovation Team of Anhui Province (LTIT20200002), and the Key Projects of Natural Science Research in Universities of Anhui Province (KJ2020A0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, B., Hu, X., Sun, D. et al. Facile fabrication of bimetallic Fe2P–Ni2P heterostructure for boosted oxygen evolution. J Mater Sci: Mater Electron 32, 23420–23428 (2021). https://doi.org/10.1007/s10854-021-06830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06830-5

Navigation