Skip to main content

Advertisement

Log in

Modulating electronic structure of multilayer flake-like Ni–CoxP bimetallic catalyst for highly efficient hydrogen evolution reaction in alkaline and acidic medium

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

As the efficient and low-cost alternatives to noble metal-based catalysts, transition metal phosphides (TMPs) exhibit excellent catalytic activity and stability in hydrogen evolution reaction (HER). In this study, the ion doping strategy is adopted to further boost the electrocatalytic performance of TMPs. Herein, a multilayer flake-like Ni–CoxP bimetallic catalyst has been successfully fabricated through the reduction process of the synthesized phosphide (Ni–CoP). The synergistic effect of CoP/Co2P and Ni doping could result in the modulated electronic structure, high conductivity, and fast electron and mass transfer of the catalyst. Moreover, the refined nanostructure of Ni–CoxP nanosheets (NSs) affords more exposed active sites and electrochemical surface area, which are considered to be effective approaches to increase the catalytic activity for HER. Specifically, the overpotentials of Ni–CoxP NSs could reach 106 mV and 172 mV at the current density of 10 mA cm−2 in alkaline and acid medium, respectively. Meanwhile, Ni–CoxP NSs also demonstrate favorable stability and durability which are illustrated by chronoamperometry and 2000-cycle tests. Compared with the conventional HER electrocatalysts, the catalyst synthesized by this method is not only cheap and easy to obtain but also lays a solid foundation for the practical industrial application of renewable energy technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhuang M, Ou X, Dou Y, Zhang L, Zhang Q, Wu R, Ding Y, Shao M, Luo Z (2016) Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N, P Doped graphene for hydrogen generation. Nano Lett 16:4691–4698

    Article  CAS  PubMed  Google Scholar 

  2. Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F (2015) Nonstoichiometric Oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem Rev 115:9869–9921

    Article  CAS  PubMed  Google Scholar 

  3. Ma Y, Wu C, Feng X, Tan H, Yan L, Liu Y, Kang Z, Wang E, Li Y (2017) Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ Sci 10:788–798

    Article  CAS  Google Scholar 

  4. Septiani NLW, Kaneti YV, Guo Y, Yuliarto B, Jiang X, Ide Y, Nugraha N, Dipojono HK, Yu A, Sugahara Y, Golberg D, Yamauchi Y (2020) Holey assembly of two-dimensional iron-doped nickel-cobalt layered double hydroxide nanosheets for energy conversion application. Chemsuschem 13:1645–1655

    Article  CAS  PubMed  Google Scholar 

  5. Yao Y, Gu X, He D, Li Z, Liu W, Xu Q, Yao T, Lin Y, Wang H, Zhao C, Wang X, Yin P, Li H, Hong X, Wei S, Li W, Li Y, Wu Y (2019) Engineering the electronic structure of submonolayer Pt on intermetallic Pd3Pb via charge transfer boosts the hydrogen evolution reaction. J Am Chem Soc 141:19964–19968

    Article  CAS  PubMed  Google Scholar 

  6. Suen NT, Hung SF, Quan Q, Zhang N, Xu Y, Chen H (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365

    Article  CAS  PubMed  Google Scholar 

  7. Huynh M, Ozel T, Liu C, Lau EC, Nocera DG (2017) Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid. Chem Sci 8:4779–4794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li H, Zhang L, Wang S, Yu J (2019) Accelerated oxygen evolution kinetics on NiFeAl-layered double hydroxide electrocatalysts with defect sites prepared by electrodeposition. Int J Hydrog Energy 44:28556–28565

    Article  CAS  Google Scholar 

  9. Xu X, Chen Y, Zhou W, Zhu Z, Su C, Liu M, Shao Z (2016) A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv Mater 28:6442–6448

    Article  CAS  PubMed  Google Scholar 

  10. Ma B, Yang Z, Chen Y, Yuan Z (2019) Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res 12:375–380

    Article  CAS  Google Scholar 

  11. Ge Z, Fu B, Zhao J, Li X, Ma B, Chen Y (2020) A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. J Mater Sci 55:14081–14104

    Article  CAS  Google Scholar 

  12. Wu Y, Liu Y, Li G, Zou X, Lian X, Wang D, Sun L, Asefa T, Zou X (2017) Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3−xS4 coupled Ni3S2 nanosheet arrays. Nano Energy 35:161–170

    Article  CAS  Google Scholar 

  13. Guo Y, Zhang C, Zhang J, Dastafkan K, Wang K, Zhao C, Shi Z (2021) Metal−organic framework-derived bimetallic NiFe selenide electrocatalysts with multiple phases for efficient oxygen evolution reaction. ACS Sustain Chem Eng 9:2047–2056

    Article  CAS  Google Scholar 

  14. Septiani NLW, Kaneti YV, Fathoni KB, Kani K, Allah AE, Yuliarto B, Dipojono NHK, Alothman ZA, Golberg D, Yamauchi Y (2020) Self-assembly of two-dimensional bimetallic nickel−cobalt phosphate nanoplates into one-dimensional porous chainlike architecture for efficient oxygen evolution reaction. Chem Mater 32:7005–7018

    Article  CAS  Google Scholar 

  15. Hu S, Wang S, Feng C, Wu H, Zhang J, Mei H (2020) Novel MOF-derived nickel nitride as high-performance bifunctional electrocatalysts for hydrogen evolution and urea oxidation. ACS Sustain Chem Eng 8:7414–7422

    Article  CAS  Google Scholar 

  16. Wu H, Lu X, Zheng G, Ho GW (2018) Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis. Adv Energy Mater 8:1702704

    Article  CAS  Google Scholar 

  17. Liu H, Xi C, Xin J, Zhang G, Zhang S, Zhang Z, Huang Q, Li J, Liu H, Kang J (2021) Free-standing nanoporous NiMnFeMo alloy: an efficient non-precious metal electrocatalyst for water splitting. Chem Eng J 404:126530

    Article  CAS  Google Scholar 

  18. Yan L, Cao L, Dai P, Gu X, Liu D, Li L, Wang Y, Zhao X (2017) Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Adv Funct Mater 27:1703455

    Article  CAS  Google Scholar 

  19. Chang Q, Jin Y, Jia M, Yuan Q, Zhao C, Jia M (2020) Sulfur-doped CoP@ Nitrogen-doped porous carbon hollow tube as an advanced anode with excellent cycling stability for sodium-ion batteries. J Colloid Interface Sci 575:61–68

    Article  CAS  PubMed  Google Scholar 

  20. Dinh KN, Liang Q, Du C, Zhao J, Tok AIY, Mao H, Yan Q (2019) Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion. Nano Today 25:99–121

    Article  CAS  Google Scholar 

  21. Zhang M, Ci S, Li H, Cai P, Xu H, Wen Z (2017) Highly defective porous CoP nanowire as electrocatalyst for full water splitting. Int J Hydrog Energy 42:29080–29090

    Article  CAS  Google Scholar 

  22. Zhou G, Li M, Li Y, Dong H, Sun D, Liu X, Xu L, Tian Z, Tang Y (2019) Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting. Adv Funct Mater 30:1905252

    Article  CAS  Google Scholar 

  23. Wu J, Han N, Ning S, Chen T, Zhu C, Pan C, Wu H, Pennycook SJ, Guan C (2020) Single-atom tungsten-doped CoP nanoarrays as a high-efficiency pH-universal catalyst for hydrogen evolution reaction. ACS Sustain Chem Eng 8:14825–14832

    Article  CAS  Google Scholar 

  24. Liu M, Li J (2016) Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl Mater Interfaces 8:2158–2165

    Article  CAS  PubMed  Google Scholar 

  25. Jin H, Liu X, Chen S, Vasileff A, Li L, Jiao Y, Song L, Zheng Y, Qiao S (2019) Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction. ACS Energy Lett 4:805–810

    Article  CAS  Google Scholar 

  26. Huang H, Yu C, Yang J, Zhao C, Han X, Liu Z, Qiu J (2016) Strongly coupled architectures of cobalt phosphide nanoparticles assembled on graphene as bifunctional electrocatalysts for water splitting. ChemElectroChem 3:719–725

    Article  CAS  Google Scholar 

  27. Weng B, Grice CR, Meng W, Guan L, Xu F, Yu Y, Wang C, Zhao D, Yan Y (2018) Metal-organic framework-derived CoWP@C composite nanowire electrocatalyst for efficient water splitting. ACS Energy Lett 3:1434–1442

    Article  CAS  Google Scholar 

  28. Zhao Y, Zhang J, Xie Y, Sun B, Jiang J, Jiang W, Xi S, Yang H, Yan K, Wang S, Guo X, Li P, Han Z, Lu X, Liu H, Wang G (2021) Constructing atomic heterometallic sites in ultrathin nickel-incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting. Nano Lett 21:823–832

    Article  CAS  PubMed  Google Scholar 

  29. Mahala C, Devi Sharma M, Basu M (2019) Fe-doped nickel hydroxide/nickel oxyhydroxide function as an efficient catalyst for the oxygen evolution reaction. ChemElectroChem 6:3488–3498

    Article  CAS  Google Scholar 

  30. Wang L, Li Y, Sun Q, Qiang Q, Shen Y, Ma Y, Wang Z, Zhao C (2019) Ultralow FeIII ion doping triggered generation of Ni3S2 ultrathin nanosheet for enhanced oxygen evolution reaction. ChemCatChem 11:2011–2016

    Article  CAS  Google Scholar 

  31. Guo WH, Zhang Q, Wang X, Yang Y, Li X, Li L, Luo H, Li N (2020) MOF-derived V-CoxP@NC nanoarchitectures for highly enhanced electrocatalytic water splitting through electronical tuning. Electrochim Acta 357:136850

    Article  CAS  Google Scholar 

  32. Gang C, Chen J, Li X, Ma B, Zhao X, Chen Y (2021) Cu3P@CoO core–shell heterostructure with synergistic effect for highly efficient hydrogen evolution. Nanoscale 13:19430–19437

    Article  CAS  PubMed  Google Scholar 

  33. Chen J, Li X, Ma B, Zhao X, Chen Y (2021) Cu3P@Ni core–shell heterostructure with modulated electronic structure for highly efficient hydrogen evolution. Nano Res https://doi.org/10.1007/s12274-021-3915-9

  34. Wang K, Tan J, Lu Z, Chen S, She X, Zhang H, Yang D (2018) Nanoscale engineering MoP/Fe2P/RGO toward efficient electrocatalyst for hydrogen evolution reaction. Int J Hydrog Energy 43:13939–13945

    Article  CAS  Google Scholar 

  35. Zhao M, Yuan W, Li C (2017) Controlled self-assembly of Ni foam supported poly(ethyleneimine)/reduced graphene oxide three-dimensional composite electrodes with remarkable synergistic effects for efficient oxygen evolution. J Mater Chem A 5:1201–1210

    Article  CAS  Google Scholar 

  36. Gholamvand Z, McAteer D, Harvey A, Backes C, Coleman JN (2016) Electrochemical applications of two-dimensional nanosheets: the effect of nanosheet length and thickness. Chem Mater 28:2641–2651

    Article  CAS  Google Scholar 

  37. Huang F, Wang J, Wang M, Zhang C, Xue Y, Liu J, Xu T, Cai N, Chen W, Yu F (2021) Core-shell Ni2P@CoP nanoarrays supported on NF as a highly efficient electrocatalyst for hydrogen evolution reaction. Colloids Surf A Physicochem Eng Asp 623:126526

    Article  CAS  Google Scholar 

  38. Kanetia YV, Guo Y, Septiani NLW, Iqbal M, Jiang X, Takei T, Yuliarto B, Alothman Z, Golberg D, Yamauchi Y (2021) Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reaction. Chem Eng J 405:126580

    Article  CAS  Google Scholar 

  39. Ran Z, Shu C, Hou Z, Zhang W, Yan Y, He M, Long J (2021) Modulating electronic structure of honeycomb-like Ni2P/Ni12P5 heterostructure with phosphorus vacancies for highly efficient lithium-oxygen batteries. Chem Eng J 413:127404

    Article  CAS  Google Scholar 

  40. Duan J, Chen S, Ortiz-Ledon CA, Jaroniec M, Qiao S (2020) Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude. Angew Chem Int Ed Engl 59:8181–8186

    Article  CAS  PubMed  Google Scholar 

  41. Chen G, Ma T, Liu Z, Li N, Su Y, Davey K, Qiao S (2016) Efficient and stable bifunctional electrocatalysts Ni/NixMy(M = P, S) for overall water splitting. Adv Funct Mater 26:3314–3323

    Article  CAS  Google Scholar 

  42. Shen J, Wang M, Zhao L, Jiang J, Liu H, Liu J (2018) Self-supported stainless steel nanocone array coated with a layer of Ni-Fe oxides/(oxy)hydroxides as a highly active and robust electrode for water oxidation. ACS Appl Mater Interfaces 10:8786–8796

    Article  CAS  PubMed  Google Scholar 

  43. Xu L, Zhang Y, Feng L, Li X, An Q (2021) A facile preparation method for MoS2 nanosheets and their well-controllable interfacial assembly with PEDOT: PSS for effective electrochemical hydrogen evolution reactions. J Mater Sci 56:7008–7021

    Article  CAS  Google Scholar 

  44. Zhang Y, Gao L, Hensen EJM, Hofmann JP (2018) Evaluating the stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes. ACS Energy Lett 3:1360–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parra-Puerto A, Ng KL, Fahy K, Goode AE, Ryan MP, Kucernak A (2019) Supported transition metal phosphides: activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes. ACS Catal 9:11515–11529

    Article  CAS  Google Scholar 

  46. Subbaraman R, Tripkovic D, Chang K, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater 11:550–557

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Anhui Provincial Natural Science Foundation (1808085ME143) and the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (2021-KF-20, Wuhan University of Technology).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyun Chen or Qinghua Yang.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3398 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Liao, W., Tong, X. et al. Modulating electronic structure of multilayer flake-like Ni–CoxP bimetallic catalyst for highly efficient hydrogen evolution reaction in alkaline and acidic medium. Ionics 28, 2895–2902 (2022). https://doi.org/10.1007/s11581-022-04533-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04533-3

Keywords

Navigation