Skip to main content
Log in

Investigation on Cu–Sn intermetallic compounds growth and signal transmission loss of the diverse copper lines after soldering in printed circuit board

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The growth of IMCs at solder/substrate interface becomes more important with the sustaining advancement of integrated circuit technology. The purpose of this study was to investigate the morphology and growth kinetics of the intermetallic compounds (IMCs) formed on the diverse copper lines (including electroless copper, electroplated copper, sputtered copper) of printed circuit board under different conditions (counting isothermal aging, thermal shock and multiple reflow). And the influence of IMCs on signal integrity after isothermal aging treatment was also discussed. The results indicate that IMCs emerged on copper lines with discrepant microstructure have evident differences in morphology and thickness while the microstructure, composition and growth thickness of the IMCs naturally get changed during variational conditions. And overgrown IMCs will further aggravate the signal transmission loss for the microstrip transmission line. These interesting evolutions in IMCs introduce advantageous assistance for further investigation of solder joint reliability in electronic packaging technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Yang, H.J. Ji, S. Wang et al., Effects of Ag content on the interfacial reactions between liquid Sn-Ag-Cu solders and Cu substrates during soldering. J. Alloy. Compd. 679, 18–25 (2016)

    Article  CAS  Google Scholar 

  2. D.Q. Yu, L. Wang, The growth and roughness evolution of intermetallic compounds of Sn-Ag-Cu/Cu interface during soldering reaction. J. Alloy. Compd. 458, 542–547 (2008)

    Article  CAS  Google Scholar 

  3. X. Ma, F.J. Wang, Y.Y. Qian et al., Development of Cu–Sn intermetallic compound at Pb-free solder/Cu joint interface. Mater. Lett. 57, 3361–3365 (2003)

    Article  CAS  Google Scholar 

  4. G. Chen, F.S. Wu, C.Q. Liu et al., Microstructures and properties of new Sn-Ag-Cu lead-free solder reinforced with Ni-coated graphene nanosheets. J. Alloy. Compd. 25, 500–509 (2016)

    Article  CAS  Google Scholar 

  5. Y. Li, K. Moon, C.P. Wang, Electronics without lead. Science 308, 1419–1420 (2005)

    Article  CAS  Google Scholar 

  6. M.Y. Xiong, L. Zhang, Interface reaction and intermetallic compound growth behavior of Sn-Ag-Cu lead-free solder joints on different substrates in electronic packaging. J. Mater. Sci. 54, 1741–1768 (2019)

    Article  CAS  Google Scholar 

  7. S. Zhang, X. Qi, M. Yang et al., A study on the resistivity and mechanical properties of modified nano-Ag coated Cu particles in electrically conductive adhesives. J. Mater. Sci.: Mater. Electron. 30(10), 9171–9183 (2019)

    CAS  Google Scholar 

  8. Q. Wang, S. Zhang, T. Lin et al., Highly mechanical and high-temperature properties of Cu–Cu joints using citrate-coated nanosized Ag paste in air. Progress Nat. Sci.: Mater. Int. 31(1), 129–140 (2021)

    Article  CAS  Google Scholar 

  9. S. Zhang, Q. Wang, T. Lin et al., Cu-Cu joining using citrate coated ultra-small nano-silver pastes. J. Manuf. Process. 62, 546–554 (2021)

    Article  Google Scholar 

  10. P.L. Tu, Y.C. Chan, K.C. Hung et al., Growth kinetics of intermetallic compounds in chip scale package solder joint. Scripta Mater. 44(2), 317–323 (2001)

    Article  CAS  Google Scholar 

  11. J.W. Yoon, S.B. Jung, Effect of isothermal aging on intermetallic compound layer growth at the interface between Sn-35 Ag-075 Cu solder and Cu substrate. J. Mater. Sci. 39, 4211–4217 (2004)

    Article  CAS  Google Scholar 

  12. J.Y. Feng, C.J. Hang, Y.H. Tian et al., Effect of electric current on grain orientation and mechanical properties of Cu-Sn intermetallic compounds joints. J. Alloy. Compd. 753, 203–211 (2018)

    Article  CAS  Google Scholar 

  13. T.T. Luu, N. Hoivik, K. Wang et al., High-temperature mechanical integrity of Cu-Sn SLID wafer-level bonds. Metall. and Mater. Trans. A. 46, 5266–5274 (2015)

    Article  CAS  Google Scholar 

  14. J. Shen, Y.C. Chan, Effect of metal/ceramic nanoparticle-doped fluxes on the wettability between Sn-Ag-Cu solder and a Cu layer. J. Alloy. Compd. 477, 909–914 (2009)

    Article  CAS  Google Scholar 

  15. W.H. Chen, C.F. Yu, H.C. Cheng et al., IMC growth reaction and its effects on solder joint thermal cycling reliability of 3D chip stacking packaging. Microelectron. Reliab. 53, 30–40 (2013)

    Article  CAS  Google Scholar 

  16. H.B. Qin, W.Y. Li, M.B. Zhou et al., Low cycle fatigue performance of ball grid array structure Cu/Sn-30 Ag-05 Cu/Cu solder joints. Microelectron. Reliab. 54, 2911–2921 (2014)

    Article  CAS  Google Scholar 

  17. L. Liu, Z.W. Chen, C.Q. Liu et al., Micro-mechanical and fracture characteristics of Cu6Sn5 and Cu3Sn intermetallic compounds under micro-cantilever bending. Intermetallics 76, 10–17 (2016)

    Article  CAS  Google Scholar 

  18. T. Xu, X.W. Hu, Y.L. Li et al., The growth behavior of interfacial intermetallic compound between Sn-35Ag-05Cu solder and Cu substrate under different thermal-aged conditions. J. Mater. Sci.: Mater. Electron. 28, 18515–18528 (2017)

    CAS  Google Scholar 

  19. M. Yang, M.Y. Li, J.Y. Kim, Texture evolution and its effects on growth of intermetallic compounds formed at eutectic Sn37Pb/Cu interface during solid-state aging. Intermetallics 31, 177–185 (2012)

    Article  CAS  Google Scholar 

  20. A.K. Gain, T. Fouzder, Y.C. Chan et al., Microstructure, kinetic analysis and hardness of Sn–Ag-Cu-1wt% nano-ZrO2 composite solder on OSP-Cu pads. J. Alloy. Compd. 509, 3319–3325 (2011)

    Article  CAS  Google Scholar 

  21. M. Yang, Y.H. Ko, J.W. Bang et al., Growth inhibition of interfacial intermetallic compounds by pre-coating oriented Cu6Sn5 grains on Cu substrates. J. Alloy. Compd. 701, 533–541 (2017)

    Article  CAS  Google Scholar 

  22. Y.H. Ko, J.D. Lee, T. Yoon et al., Controlling interfacial reactions and intermetallic compound growth at the interface of a lead-free solder joint with layer-by-layer transferred graphene. ACS Appl. Mater. Interfaces. 8, 5679–5686 (2016)

    Article  CAS  Google Scholar 

  23. M. Ratzker, A. Pearl, M. Osterman et al., Review of capabilities of the ENEPIG surface finish. J. Electron. Mater. 43, 3885–3897 (2014)

    Article  CAS  Google Scholar 

  24. J.W. Yoon, J.H. Bang, C.W. Lee et al., Interfacial reaction and intermetallic compound formation of Sn–1Ag/ENIG and Sn–1Ag/ENEPIG solder joints. J. Alloy. Compd. 627, 276–280 (2015)

    Article  CAS  Google Scholar 

  25. H.K. Cheng, Y.J. Lin, C.M. Chen et al., Microstructural evolution of Cu/solder/Cu pillar-type structures with different diffusion barriers. Metall. and Mater. Trans. A. 47, 3971–3980 (2016)

    Article  CAS  Google Scholar 

  26. H.K. Cheng, Y.J. Lin, H.C. Chang et al., Unusual morphological evolution of the Cu pillar/solder micro-joints during high-temperature annealing. Metall. and Mater. Trans. A. 46, 1834–1837 (2015)

    Article  CAS  Google Scholar 

  27. X. Ma, Y. Qian, F. Yoshida, Effect of La on the Cu–Sn intermetallic compound (IMC) growth and solder joint reliability. J. Alloy. Compd. 334, 224–227 (2002)

    Article  CAS  Google Scholar 

  28. Y.W. Wang, C.C. Chang, C.R. Kao, Minimum effective Ni addition to SnAgCu solders for retarding Cu3Sn growth. J. Alloy. Compd. 478, L1–L4 (2009)

    Article  CAS  Google Scholar 

  29. Y. Huang, Z. Xiu, G. Wu et al., Improving shear strength of Sn-30 Ag-05 Cu/Cu joints and suppressing intermetallic compounds layer growth by adding graphene nanosheets. Mater. Lett. 169, 262–264 (2016)

    Article  CAS  Google Scholar 

  30. C. Yang, F. Le, S.W.R. Lee, Experimental investigation of the failure mechanism of Cu-Sn intermetallic compounds in SAC solder joints. Microelectron. Reliab. 62, 130–140 (2016)

    Article  CAS  Google Scholar 

  31. A.T. Tan, A.W. Tan, F. Yusof, Evolution of microstructure and mechanical properties of Cu/SAC305/Cu solder joints under the influence of low ultrasonic power. J. Alloy. Compd. 705, 188–197 (2017)

    Article  CAS  Google Scholar 

  32. J. Hokka, T.T. Mattila, H. Xu et al., Thermal cycling reliability of Sn-Ag-Cu solder interconnections. part 1: effects of test parameters. J. Electron. Mater. 42, 1171–1183 (2013)

    Article  CAS  Google Scholar 

  33. J. Hokka, T.T. Mattila, H. Xu et al., Thermal cycling reliability of Sn-Ag-Cu solder interconnections-Part 2: failure mechanisms. J. Electron. Mater. 42, 963–972 (2013)

    Article  CAS  Google Scholar 

  34. N. Huang, A. Hu, M. Li, Influence of texture of Cu on the growth of Cu-Sn intermetallic compounds. Mater. Lett. 109, 8–11 (2013)

    Article  CAS  Google Scholar 

  35. C. Wang, N. Wen, G. Zhou et al., Incorporation of Tin on copper clad laminate to increase the interface adhesion for signal loss reduction of high-frequency PCB lamination. Appl. Surf. Sci. 422, 738–744 (2017)

    Article  CAS  Google Scholar 

  36. Y. Chen, Y. Gao, X. Jin et al., Effect of surface finishing on signal transmission loss of microstrip copper lines for high-speed PCB. J. Mater. Sci.: Mater. Electron. 30, 16226–16233 (2019)

    CAS  Google Scholar 

  37. L. Sun, L. Zhang, S.J. Zhong et al., Reliability study of industry Sn3.0Ag0.5Cu/Cu lead-free soldered joints in electronic packaging. J. Mater. Sci.: Mater. Electron. 26, 9164–9170 (2015)

    CAS  Google Scholar 

  38. Y. Chen, W. He, X. Chen et al., Plating uniformity of bottom-up copper pillars and patterns for IC substrates with additive-assisted electrodeposition. Electrochim. Acta 120, 293–301 (2014)

    Article  CAS  Google Scholar 

  39. X. You, Y. Chen, Y. Huang et al., Surface coarsening of carbon fiber/cyanate ester composite for adhesion improvement of electroless copper plating as conductive patterns. Mater. Chem. Phys. 255, 123597 (2020)

    Article  CAS  Google Scholar 

  40. C.M. Chuang, K.L. Lin, Effect of microelements addition on the interfacial reaction between Sn-Ag-Cu solders and the Cu substrate. J. Electron. Mater. 32, 1426–1431 (2003)

    Article  CAS  Google Scholar 

  41. C.E. Ho, R.Y. Tsai, Y.L. Lin et al., Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni. J. Electron. Mater. 31, 584–590 (2002)

    Article  CAS  Google Scholar 

  42. D.Q. Yu, L. Wang, C.M.L. Wu et al., The formation of nano-Ag3Sn particles on the intermetallic compounds during wetting reaction. J. Alloy. Compd. 389, 153–158 (2005)

    Article  CAS  Google Scholar 

  43. T.Y. Lee, W.J. Choi, K.N. Tu et al., Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu. J. Mater. Res. 17, 291–301 (2002)

    Article  CAS  Google Scholar 

  44. R. Tian, C.J. Hang, Y.H. Tian et al., Growth behavior of intermetallic compounds and early formation of cracks in Sn-3Ag-05 Cu solder joints under extreme temperature thermal shock. Mater. Sci. Eng.: A 709, 125–133 (2018)

    Article  CAS  Google Scholar 

  45. J.H.L. Pang, L. Xu, X.Q. Shi et al., Intermetallic growth studies on Sn-Ag-Cu lead-free solder joints. J. Electron. Mater. 33, 1219–1226 (2004)

    Article  CAS  Google Scholar 

  46. S.K. Kang, D.Y. Shih, N.Y. Donald et al., Ag3Sn plate formation in the solidification of near-ternary eutectic Sn-Ag-Cu. JOM. 55, 61–65 (2003)

    Article  CAS  Google Scholar 

  47. D.W. Henderson, T. Gosselin, A. Sarkhel et al., Ag3Sn plate formation in the solidification of near ternary eutectic Sn–Ag–Cu alloys. J. Mater. Res. 17, 2775–2778 (2002)

    Article  CAS  Google Scholar 

  48. S. Bhattacharjee, M.A. Alim, Frequency dependent impedance and admittance (immittance) data-handling and interpretation using complex plane formalisms via nonlinear regression analysis for smart electronic materials and devices: overview and case studies. J. Mater. Sci.: Mater. Electron. 26, 4521–4540 (2015)

    CAS  Google Scholar 

  49. B.J. Kim, G.T. Lim, J. Kim et al., Intermetallic compound growth and reliability of Cu pillar bumps under current stressing. J. Electron. Mater. 39, 2281–2285 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of National Natural Science Foundation of China (Nos. 51801018 and 61974020). The work is also supported by Innovation Team Project of Zhuhai City (No. ZH0405190005PWC), and the projects of Sci & Tech planning of Guangdong Province (No. 2019B090910003) and Zhuhai City (No. ZH01084702180040HJL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxu Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, L., Xu, J. et al. Investigation on Cu–Sn intermetallic compounds growth and signal transmission loss of the diverse copper lines after soldering in printed circuit board. J Mater Sci: Mater Electron 32, 22372–22386 (2021). https://doi.org/10.1007/s10854-021-06723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06723-7

Navigation