Skip to main content
Log in

Comparative optical studies of InAlAs/InP quantum wells grown by MOCVD on (311)A and (311)B InP planes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We study the optical and vibrational properties of InAlAs alloy films on high-index InP (311)A/B substrate at a wide range of V/III flux ratio (25–125).The crystallinity, vibrational and optical characteristics of InAlAs/InP structures are determined using a combination of photoluminescence (PL) and micro-Raman spectroscopies. Raman studies of InAlAs layer grown on traditional (100)InP substrates show a strong dependence of the optical phonons on V/III molar ratio (Sayari et al. in J Raman Spectrosc 40:1023–1027, 2009). Analysis of PL spectra shows the formation of InAsxP1−x graded layer located at the inverted interface and a broadening of the InAlAs PL band suggests that a clustering effect. Also, a strong dependence of these PL bands on the V/III ratio and substrate polarity is observed and attributed to the clustering effect and to the presence of a strain-induced piezoelectric field. In addition, micro-Raman spectra show a line shape broadening and wave number shift of the Raman peaks for various V/III molar ratios. Furthermore, we discuss the effect laser excitation wavelength on the Raman spectrum. Then, micro-Raman investigations show the presence of an LO mode related to LO-like InAs in InAsP alloy at the inverted interface in our samples. At lower frequencies, disorder-activated longitudinal acoustic phonons are also observed, which considers the presence of potential fluctuations (cluster effect). Finally, by using the modified random-element-iso-displacement theory, we have explained the alloying effect in the InxAl1−xAs layers. A good consistency between calculated and measured InAs and AlAs-like phonon frequencies is obtained. Using the AlAs-like LO phonon frequency shifts, we have calculated the residual strain in the InxAl1−xAs layer. The lower residual strain value is obtained for the (311)A orientation with the lowest V/III ratio and for the (311)B orientation with the largest V/III ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Demir, S. Elagoz, V/III ratio effects on high quality InAlAs for quantum cascade laser structures. J. Superlatt. Microstruct. 104, 140–148 (2017)

    Article  CAS  Google Scholar 

  2. P. Gutowski, I. Sankowska, P. Karbownik, D. Pierścińska, O. Serebrennikova, M. Morawiec, E.P. Karbownik, K.G. Malec, K. Pierściński, J. Muszalski, M. Bugajski, MBE growth of strain-compensated InGaAs/InAlAs/InP quantum cascade lasers. J. Cryst. Growth 466, 22–29 (2017)

    Article  CAS  Google Scholar 

  3. J. Hellara, K. Borgi, H. Maaref, V. Souliere, Y. Monteil, Optical properties of InP/InAlAs/InP grown by MOCVD on (100) substrates: influence of V/III molar ratio. Mater. Sci. Eng. C 21, 231–236 (2002)

    Article  Google Scholar 

  4. B. Smiri, I. Fraj, F. Saidi, R. Mghaieth, H. Maaref, Effect of piezoelectric filed on type II transition in InAlAs/InP (311) alloys with different substrate polarity. J. Alloys Compd. 736, 29–34 (2018)

    Article  CAS  Google Scholar 

  5. P. Abraham, Y. Monteil, M. Sacilotti, T. Benyattou, M.A. Garcia, S. Moneger, A. Tabata, R. Landers, J. Morais, M. Pitaval, Optical studies of InP/InAlAs/InP interface recombinations. Appl. Surf. Sci. 65–66, 777–783 (1993)

    Article  Google Scholar 

  6. L.C. Poças, J.L. Duarte, I.F.L. Dias, E. Laureto, S.A. Lourenço, D.O. Toginho Filho, E.A. Meneses, I. Mazzaro, J.C. Harmand, Photoluminescence study of interfaces between heavily doped Al0.48In0.52As: Si layers and InP (Fe) substrates. J. Appl. Phys. 91, 8999 (2002)

    Article  Google Scholar 

  7. H. Esmaielpour, V.R. Whiteside, L.C. Hirst, J.G. Tischler, R.J. Walters, I.R. Sellers, The effect of an InP cap layer on the photoluminescence of an InxGa1–xAs1 – yPy/InzAl1–zAs quantum well heterostructure. J. Appl. Phys. 121, 235301 (2017)

    Article  Google Scholar 

  8. B. Smiri, F. Saidi, A. Mlayah, H. Maaref, Effect of substrate polarity on the optical and vibrational properties of (311)A and (311) B oriented InAlAs/InP heterostructures. Physica E. 112, 121 (2019)

    Article  CAS  Google Scholar 

  9. A. Sayari, N. Yahyaoui, M. Oueslati, H. Maaref, K. Zellama, Raman study of V/III flux ratio effect in InP/InAlAs/InP heterostructures grown by MOCVD. J. Raman Spectrosc. 40, 1023–1027 (2009)

    Article  CAS  Google Scholar 

  10. B. Smiri, T. Hidouri, F. Saidi, H. Maaref, Power and temperature dependent photoluminescence investigation of the carrier localization at inverted interface transitions in InAlAs/InP structures. Appl. Phys. A Mater. 125, 134 (2019)

    Article  Google Scholar 

  11. S.F. Yoon, K. Radhakrishnan, Q.H. Du, Laser excitation induced photoluminescence linewidth reduction in molecular beam epitaxial InAlAs layers grown on InP substrates. Superlatt. Microst. 23, 503–512 (1998)

    Article  CAS  Google Scholar 

  12. Y. Li, M. Niewcza, Strain relaxation in (100) and (311) GaP∕GaAsGaP∕GaAs thin films. J. Appl. Phys. 101, 064910 (2007)

    Article  Google Scholar 

  13. C. Cornet, A. Schliwa, J. Even, F. Doré, C. Celebi, A. Létoublon, E. Macé, C. Paranthoën, A. Simon, P.M. Koenraad, N. Bertru, D. Bimberg, S. Loualiche, Electronic and optical properties of InAs∕InP quantum dots on InP(100) and InP(311)B substrates: theory and experiment. Phys. Rev. B 74, 035312 (2006)

    Article  Google Scholar 

  14. B. Smiri, I. Fraj, M. Bouzidi, F. Saidi, A. Rebey, H. Maaref, Effect of V/III ratio on the optical properties of (311)A and (311) B oriented InAlAs/InP heterostructures. Results Phys 12, 2175 (2019)

    Article  Google Scholar 

  15. M. Ogura, T. Sugaya, Highly sensitive InGaAs = InAlAs quantum wire photo-FET. Electron. Lett. 42, 7 (2006)

    Article  Google Scholar 

  16. K. Akahane, H. Yamamoto, A. Matsumoto, T. Umezawa, H. Sotobayashi, N. Yamamoto, Polarization dependence of photoluminescence from InAs quantum dots grown on InP(311)B substrates using digital embedding method. Phys. Status Solidi. A 215, 1700418 (2018)

    Article  Google Scholar 

  17. Y. Yasuda, S. Koh, K. Ikeda, H. Kawaguchi, Crystal growth of InGaAs/InAlAs quantum wells on InP(110) by MBE. J. Cryst. Growth 364, 95 (2013)

    Article  CAS  Google Scholar 

  18. N. Ha, T. Mano, T. Kuroda, K. Mitsuishi, A. Ohtake, A. Castellano, S. Sanguinetti, T. Noda, Y. Sakuma, K. Sakoda, Droplet epitaxy growth of telecom InAs quantum dots on metamorphic InAlAs/GaAs(111)A. Jpn. J. Appl. Phys. 54, 04DH07 (2015)

    Article  Google Scholar 

  19. C.D. Yerino, B. Liang, D.L. Huffaker, P.J. Simmonds, M.L. Lee, R. Article, Molecular beam epitaxy of lattice-matched InAlAs and InGaAs layers on InP (111)A, (111)B, and (110). J. Vac. Sci. Technol. B. 35, 010801 (2017)

    Article  Google Scholar 

  20. Y. Li, M. Niewcza, Strain relaxation in (100) and (311) GaP∕GaAs thin films. J. Appl. Phys. 101, 064910 (2007)

    Article  Google Scholar 

  21. M. Sacilotti, P. Motisuke, Y. Monteil, P. Abraham, F. Iikawa, C. Montes, M. Furtado, L. Horiuchi, R. Landers, J. Morais, L. Cardoso, J. Decobert, B. Waldman, Interface recombination & emission applied to explain photosynthetic mechanisms for (e–, h+) charges’ separation. J. Cryst. Growth 124, 589 (1992)

    Article  CAS  Google Scholar 

  22. K. ], M. Borgi, F. Hjiri, H. Hassen, V. Maaref, Y. Souliere, Monteil, Optical study of inverted interface in InP/InAlAs/InP structures grown by MOCVD. Microelectron. Eng. 51–52, 299–308 (2000)

    Google Scholar 

  23. A. Khatab, M. Shafi, R.H. Mari, M. Aziz, M. Henini, G. Patriarche, D. Troadec, M. Sadeghi, S. Wang, Comparative optical studies of InGaAs/GaAs quantum wells grown by MBE on (100) and (311)A GaAs planes. Phys. Status Solidi C 7, 1621 (2012)

    Article  Google Scholar 

  24. A.G. Milekhin, A.K. Kalagin, A.P. Vasilenko, A.I. Toropov, N.V. Surovtsev, D.R.T. Zahn, Vibrational spectroscopy of InAlAs epitaxial layers. J. Appl. Phys. 104, 073516 (2008)

    Article  Google Scholar 

  25. L. Pavesi, R. Houndre, P. Giannozzi, Strain and alloying effects on the electronic and vibrational properties of InyAl1–yAs on InP. J. Appl. Phys. 78, 470 (1995)

    Article  CAS  Google Scholar 

  26. J.H. Park, M. Pozuelo, B.P.D. Setiawan, C.H. Chung, Self-catalyzed growth and characterization of In(As)P nanowires on InP(111)B using metal-organic chemical vapor deposition. Nanoscale Res. Lett. 11, 208 (2016)

    Article  Google Scholar 

  27. A. Sayari, N. Yahyaoui, A. Meftah, A. Sfaxi, M. Oueslati, Residual strain and alloying effects on the vibrational properties of step-graded InxAl1–xAs layers grown on GaAs. J. Lumin. 129, 105 (2009)

    Article  CAS  Google Scholar 

  28. A. Milekhin, N. Yeryukov, A. Toropov, D. Dmitriev, E. Sheremet, D.R. Zahn, Raman scattering of InAs/AlAs quantum dot superlattices grown on (001) and (311)B GaAs surfaces. Nanoscale Res. Lett. 7, 476 (2012)

    Article  Google Scholar 

  29. Y. Hu, L. Wang, F. Liu, J. Zhang, J. Liu, Z. Wang, Micro-Raman study on chirped InGaAs–InAlAs superlattices. Phys. Status Solidi A .210, 2364 (2013)

    Article  Google Scholar 

  30. Z.V. Popović, A. Cantarero, J. Camacho, A. Milutinovi, O. Latinovi, L. González, Raman scattering and infrared reflectivity in [(InP)5(In0.49Ga0.51As)8]30 superlattices. J. Appl. Phys. 88, 6382 (2000)

    Article  Google Scholar 

  31. A. Mlayah, R. Carles, A. Sayari, R. Chtourou, F.F. Charfi, R. Planel, Resonant Raman scattering in GaAs/AlAs superlattices: the role of electron state mixing. Phys. Rev. B .53, 3960 (1996)

    Article  Google Scholar 

  32. J.F. Girard, C. Dion, P. Desjardins, C.N. Allen, P.J. Poole, S. Raymond, Tuning of the electronic properties of self-assembled InAs/InP(001) quantum dots by rapid thermal annealing. Appl. Phys. Lett. 84, 3382 (2004)

    Article  CAS  Google Scholar 

  33. G. Gouadec, P. Colomban, Raman spectroscopy of nanostructures and nanosized materials. J. Raman Spectrosc. 38, 598–603 (2007)

    Article  CAS  Google Scholar 

  34. G. Gouadec, P. Colomban, N. Bansal, Raman study of Hi-nicalon‐fiber‐reinforced celsian composites: II, residual stress in fibers. J. Am. Ceram. Soc. 84, 1136–1142 (2001)

    Article  CAS  Google Scholar 

  35. D.J. Olego, K. Shahzad, J. Petruzzello, D. Cammack, Depth profiling of elastic strains in lattice-mismatched semiconductor heterostructures and strained-layer superlattices. Phys. Rev. B 36, 7674 (1987)

    Article  CAS  Google Scholar 

  36. S.F. Yoon, Y.B. Miao, K. Radhakrishnan, S. Swaminathan, A photoluminescence and X-ray diffraction analysis of InAlAs/InP heterostructures grown by molecular beam epitaxy. Thin Solid Films. 266, 302 (1995)

    Article  CAS  Google Scholar 

  37. M.D. Teodoro, I.F.L. Dias, E. Laureto, J.L. Duarte, P.P.G. Borrero, S.A. Lourenço, I. Mazzaro, E.M. Jr., G.J. Salamo, Substrate orientation effect on potential fluctuations in multiquantum wells of GaAs∕AlGaAs. J. Appl. Phys. 103, 093508 (2008)

    Article  Google Scholar 

  38. D. Vignaud, X. Wallart, F. Mollot, InAlAs/InP heterostructures: influence of a thin InAs layer at the interface. J. Appl. Phys. 76, 2324 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research reported in this publication was supported by the Université de Monastir, Laboratoire de Micro-Opto électronique et Nanostructures (LMON), Faculté des Sciences, 5019, Monastir, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badreddine Smiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smiri, B., Saidi, F., Mlayah, A. et al. Comparative optical studies of InAlAs/InP quantum wells grown by MOCVD on (311)A and (311)B InP planes. J Mater Sci: Mater Electron 31, 10750–10759 (2020). https://doi.org/10.1007/s10854-020-03625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03625-y

Navigation