Skip to main content
Log in

Fast photodegradation of Orange II azo dye under visible light irradiation using a semiconducting n–p heterojunction of ZnO nanoparticles/polypyrrole as catalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Preparation of innovative nano- and microstructured heterojunctions consisting of two semiconductors for highly efficient p–n photocatalysts has been of growing interest due to their advanced applications. n-type ZnO nanoparticles were synthesized by a simple precipitation method from ZnCl2 and NaOH and coated with semiconducting p-type polypyrrole (PPy) nanospheres by chemical oxidation in the presence of sodium dodecyl sulfate (SDS) as surfactant, obtaining a n-p type ZnO/PPy composite. The composite was characterized by scanning electron microscopy (SEM), FTIR and UV/Vis–NIR spectroscopies, and thermogravimetric analysis (TGA). It was observed that composite consisted of ZnO nanoparticles with rice-like morphology of sizes in the range of 180–600 nm long and between 70 and 227 nm wide, which were well dispersed into a matrix made of agglomerated spherical nanoparticles of PPy. The composite was tested as photocatalyst in the degradation of Orange II azo dye using visible light irradiation at different initial dye concentrations, catalyst loading, initial pH, and in the presence of hole and radical scavengers. Photodegradation efficiencies after 30 min of reaction in the range of 90.9–100% and fast photodegradation rates depending on the initial dye concentration and catalyst load were observed. The best photodegradation efficiency was observed at acidic pH, which was ascribed to an improved electrostatic interaction of dissociated dye molecules with the positively charged surface of photocatalyst. It was demonstrated that \(\cdot {\text{O}}_{2}^{ - }\) and other ROS are the main reactive species formed via reaction between O2 and photogenerated electrons, following a pseudo-first order of reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Pereira, M. Alves, Environ. Prot. Strateg. Sustain. Dev. (2012). https://doi.org/10.1007/978-94-007-1591-2_4

    Article  Google Scholar 

  2. P.A. Carneiro, R.F.P. Nogueira, M.V.B. Zanoni, Dye Pigment. (2006). https://doi.org/10.1016/j.dyepig.2006.01.022

    Article  Google Scholar 

  3. H. Zollinger, Leonardo (2006). https://doi.org/10.2307/1575449

    Article  Google Scholar 

  4. K.M. Ghanem, Afr. J. Microbiol. Res. (2012). https://doi.org/10.5897/ajmr11.490

    Article  Google Scholar 

  5. C. Greenhalgh, Endeavour (2004). https://doi.org/10.1016/0160-9327(77)90195-8

    Article  Google Scholar 

  6. A. Pandey, P. Singh, L. Iyengar, Int. Biodeterior. Biodegrad. (2007). https://doi.org/10.1016/j.ibiod.2006.08.006

    Article  Google Scholar 

  7. T. Robinson, B. Chandran, P. Nigam, Enzyme Microb. Technol. (2001). https://doi.org/10.1016/S0141-0229(01)00430-6

    Article  Google Scholar 

  8. M. Riera-Torres, C. Gutiérrez-Bouzán, M. Crespi, Desalination (2010). https://doi.org/10.1016/j.desal.2009.11.002

    Article  Google Scholar 

  9. M. Ghaedi, B. Sadeghian, A.A. Pebdani, R. Sahraei, A. Daneshfar, C. Duran, Chem. Eng. J. (2012). https://doi.org/10.1016/j.cej.2012.01.111

    Article  Google Scholar 

  10. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. (2010). https://doi.org/10.1016/j.watres.2010.02.039

    Article  Google Scholar 

  11. J. Kaur, S. Singhal, Ceram. Int. (2014). https://doi.org/10.1016/j.ceramint.2013.12.088

    Article  Google Scholar 

  12. S. Siuleiman, N. Kaneva, A. Bojinova, K. Papazova, A. Apostolov, D. Dimitrov, Colloids Surf. A (2014). https://doi.org/10.1016/j.colsurfa.2014.01.010

    Article  Google Scholar 

  13. S. Bagheri, Z.A. Mohd Hir, A. Termeh Yousefi, S.B.A. Hamid, Microporous Mesoporous Mater. (2015). https://doi.org/10.1016/j.micromeso.2015.05.028

    Article  Google Scholar 

  14. H. Chaker, L. Chérif-Aouali, S. Khaoulani, A. Bengueddach, S. Fourmentin, J. Photochem. Photobiol. A (2016). https://doi.org/10.1016/j.jphotochem.2015.11.025

    Article  Google Scholar 

  15. I. Stambolova, M. Shipochka, V. Blaskov, A. Loukanov, S. Vassilev, J. Photochem. Photobiol. B (2012). https://doi.org/10.1016/j.jphotobiol.2012.08.006

    Article  Google Scholar 

  16. D. Wang, T. Xie, Y. Li, Nano Res. (2009). https://doi.org/10.1007/s12274-009-9007-x

    Article  Google Scholar 

  17. A. Umar, M.S. Chauhan, S. Chauhan, R. Kumar, G. Kumar, S.A. Al-Sayari, S.W. Hwang, A. Al-Hajry, J. Colloid Interface Sci. (2011). https://doi.org/10.1016/j.jcis.2011.07.058

    Article  Google Scholar 

  18. Z. Jin, Y.X. Zhang, F.L. Meng, Y. Jia, T. Luo, X.Y. Yu, J. Wang, J.H. Liu, X.J. Huang, J. Hazard. Mater. (2014). https://doi.org/10.1016/j.jhazmat.2014.05.059

    Article  Google Scholar 

  19. M. Zhong, Y. Li, I. Yamada, J.-J. Delaunay, Nanoscale (2012). https://doi.org/10.1039/c2nr11451h

    Article  Google Scholar 

  20. A. Hassanein, N. Salahuddin, A. Matsuda, G. Kawamura, M. Elfiky, Mater. Sci. Eng. C (2017). https://doi.org/10.1016/j.msec.2017.04.101

    Article  Google Scholar 

  21. F.M.A. Almuntaser, S. Majumder, P.K. Baviskar, J.V. Sali, B.R. Sankapal, Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1131-y

    Article  Google Scholar 

  22. R. Kant, C. Dwivedi, S. Pathak, V. Dutta, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.03.208

    Article  Google Scholar 

  23. P.K. Chen, G.J. Lee, S.H. Davies, S.J. Masten, R. Amutha, J.J. Wu, Mater. Res. Bull. (2013). https://doi.org/10.1016/j.materresbull.2013.02.062

    Article  Google Scholar 

  24. Z. Mohd Hir, A. Abdullah, Z. Zainal, H. Lim, Catalysts (2017). https://doi.org/10.3390/catal7110313

    Article  Google Scholar 

  25. V.M. Ovando-Medina, L. Farías-Cepeda, N.V. Pérez-Aguilar, J. Rivera de la Rosa, H. Martínez-Gutiérrez, A. Romero Galarza, E. Cervantes-González, N. Cayetano-Castro, Rev. Mex. Ing. Quim. (2018). https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Ovando

    Article  Google Scholar 

  26. D.A. González-Casamachin, J. Rivera De la Rosa, C.J. Lucio-Ortiz, D.A. De Haro De, D.X. Rio, G.A. Martínez-Vargas, N.E. Flores-Escamilla, V.M. Dávila, E.Moctezuma-Velazquez Ovando-Medina, Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.05.032

    Article  Google Scholar 

  27. S. Yagi, S. Kobayashi, T. Inoue, T. Hori, N. Michiba, K. Okui, SAE Tech. Paper (2003). https://doi.org/10.4271/2003-01-0987

    Article  Google Scholar 

  28. J. Xie, Y. Li, W. Zhao, L. Bian, Y. Wei, Powder Technol. (2011). https://doi.org/10.1016/j.powtec.2010.10.019

    Article  Google Scholar 

  29. V.M. Ovando-Medina, R.G. López, B.E. Castillo-Reyes, P.A. Alonso-Dávila, H. Martínez-Gutiérrez, O. González-Ortega, L. Farías-Cepeda, Colloid Polym. Sci. (2015). https://doi.org/10.1007/s00396-015-3717-2

    Article  Google Scholar 

  30. E.R. García, R.L. Medina, M.M. Lozano, I.H. Pérez, M.J. Valero, A.M. Maubert Franco, Materials (Basel) (2014). https://doi.org/10.3390/ma7128037

    Article  Google Scholar 

  31. S. Anandan, Y. Ikuma, K. Niwa, Solid State Phenom. (2010). https://doi.org/10.4028/www.scientific.net/ssp.162.239

    Article  Google Scholar 

  32. F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M. Ben Said, A. Ghrabi, R. Schneider, Mater. Des. (2016). https://doi.org/10.1016/j.matdes.2016.04.015

    Article  Google Scholar 

  33. A. Benaboud, M. Zaabat, M.S. Aida, B. Boudine, S. Benzitouni, T. Saidani, Optik (Stuttg) (2017). https://doi.org/10.1016/j.ijleo.2017.06.108

    Article  Google Scholar 

  34. D. Zhang, F. Zeng, J. Iran. Chem. Soc. (2017). https://doi.org/10.1007/s13738-017-1142-9

    Article  Google Scholar 

  35. Z. Balta, E. Bilgin Simsek, D. Berek, Photochem. Photobiol. (2019). https://doi.org/10.1111/php.13117

    Article  Google Scholar 

  36. E. Bilgin Simsek, P. Demircivi, D. Berek, I. Novak, React. Kinet. Mech. Catal. (2018). https://doi.org/10.1007/s11144-017-1320-x

    Article  Google Scholar 

  37. P. Demircivi, E.B. Simsek, Water Sci. Technol. (2018). https://doi.org/10.2166/wst.2018.298

    Article  Google Scholar 

  38. F. Herrera, A. Lopez, G. Mascolo, P. Albers, J. Kiwi, Appl. Catal. B (2001). https://doi.org/10.1016/S0926-3373(00)00198-3

    Article  Google Scholar 

  39. S. Teixeira, P.M. Martins, S. Lanceros-Méndez, K. Kühn, G. Cuniberti, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.05.073

    Article  Google Scholar 

  40. Y. Liao, J. Brame, W. Que, Z. Xiu, H. Xie, Q. Li, M. Fabian, P.J. Alvarez, J. Hazard. Mater. (2013). https://doi.org/10.1016/j.jhazmat.2013.05.047

    Article  Google Scholar 

  41. D. Wang, Y. Wang, X. Li, Q. Luo, J. An, J. Yue, Catal. Commun. (2008). https://doi.org/10.1016/j.catcom.2007.10.027

    Article  Google Scholar 

  42. A.M. Huerta-Flores, I. Juárez-Ramírez, L.M. Torres-Martínez, J.E. Carrera-Crespo, T. Gómez-Bustamante, O. Sarabia-Ramos, J. Photochem. Photobiol. A (2018). https://doi.org/10.1016/j.jphotochem.2017.12.029

    Article  Google Scholar 

  43. D. Ramírez-Ortega, P. Acevedo-Peña, F. Tzompantzi, R. Arroyo, F. González, I. González, J. Mater. Sci. (2017). https://doi.org/10.1007/s10853-016-0328-3

    Article  Google Scholar 

Download references

Acknowledgements

V.M. Ovando-Medina acknowledges to CONACYT-México (Grant PDCPN-2015-384). Author M.P. Militello acknowledges to Dr. V.M. Ovando-Medina for the hospitality during the post-doctoral leave in the Coordinación Académica Región Altiplano-UASLP (PRODEP-SEP #511-6/2019-13359/México, and CONICET/Argentina).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Víctor M. Ovando-Medina or Hugo Martínez-Gutiérrez.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar-Villanueva, A.G., Ovando-Medina, V.M., Martínez-Gutiérrez, H. et al. Fast photodegradation of Orange II azo dye under visible light irradiation using a semiconducting n–p heterojunction of ZnO nanoparticles/polypyrrole as catalyst. J Mater Sci: Mater Electron 31, 1317–1327 (2020). https://doi.org/10.1007/s10854-019-02644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02644-8

Navigation