Advertisement

Fast photodegradation of Orange II azo dye under visible light irradiation using a semiconducting n–p heterojunction of ZnO nanoparticles/polypyrrole as catalyst

  • Alondra G. Escobar-Villanueva
  • Víctor M. Ovando-MedinaEmail author
  • Hugo Martínez-GutiérrezEmail author
  • M. Paula Militello
Article
  • 5 Downloads

Abstract

Preparation of innovative nano- and microstructured heterojunctions consisting of two semiconductors for highly efficient p–n photocatalysts has been of growing interest due to their advanced applications. n-type ZnO nanoparticles were synthesized by a simple precipitation method from ZnCl2 and NaOH and coated with semiconducting p-type polypyrrole (PPy) nanospheres by chemical oxidation in the presence of sodium dodecyl sulfate (SDS) as surfactant, obtaining a n-p type ZnO/PPy composite. The composite was characterized by scanning electron microscopy (SEM), FTIR and UV/Vis–NIR spectroscopies, and thermogravimetric analysis (TGA). It was observed that composite consisted of ZnO nanoparticles with rice-like morphology of sizes in the range of 180–600 nm long and between 70 and 227 nm wide, which were well dispersed into a matrix made of agglomerated spherical nanoparticles of PPy. The composite was tested as photocatalyst in the degradation of Orange II azo dye using visible light irradiation at different initial dye concentrations, catalyst loading, initial pH, and in the presence of hole and radical scavengers. Photodegradation efficiencies after 30 min of reaction in the range of 90.9–100% and fast photodegradation rates depending on the initial dye concentration and catalyst load were observed. The best photodegradation efficiency was observed at acidic pH, which was ascribed to an improved electrostatic interaction of dissociated dye molecules with the positively charged surface of photocatalyst. It was demonstrated that \(\cdot {\text{O}}_{2}^{ - }\) and other ROS are the main reactive species formed via reaction between O2 and photogenerated electrons, following a pseudo-first order of reaction.

Notes

Acknowledgements

V.M. Ovando-Medina acknowledges to CONACYT-México (Grant PDCPN-2015-384). Author M.P. Militello acknowledges to Dr. V.M. Ovando-Medina for the hospitality during the post-doctoral leave in the Coordinación Académica Región Altiplano-UASLP (PRODEP-SEP #511-6/2019-13359/México, and CONICET/Argentina).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    L. Pereira, M. Alves, Environ. Prot. Strateg. Sustain. Dev. (2012).  https://doi.org/10.1007/978-94-007-1591-2_4 CrossRefGoogle Scholar
  2. 2.
    P.A. Carneiro, R.F.P. Nogueira, M.V.B. Zanoni, Dye Pigment. (2006).  https://doi.org/10.1016/j.dyepig.2006.01.022 CrossRefGoogle Scholar
  3. 3.
  4. 4.
    K.M. Ghanem, Afr. J. Microbiol. Res. (2012).  https://doi.org/10.5897/ajmr11.490 CrossRefGoogle Scholar
  5. 5.
  6. 6.
    A. Pandey, P. Singh, L. Iyengar, Int. Biodeterior. Biodegrad. (2007).  https://doi.org/10.1016/j.ibiod.2006.08.006 CrossRefGoogle Scholar
  7. 7.
    T. Robinson, B. Chandran, P. Nigam, Enzyme Microb. Technol. (2001).  https://doi.org/10.1016/S0141-0229(01)00430-6 CrossRefGoogle Scholar
  8. 8.
    M. Riera-Torres, C. Gutiérrez-Bouzán, M. Crespi, Desalination (2010).  https://doi.org/10.1016/j.desal.2009.11.002 CrossRefGoogle Scholar
  9. 9.
    M. Ghaedi, B. Sadeghian, A.A. Pebdani, R. Sahraei, A. Daneshfar, C. Duran, Chem. Eng. J. (2012).  https://doi.org/10.1016/j.cej.2012.01.111 CrossRefGoogle Scholar
  10. 10.
    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. (2010).  https://doi.org/10.1016/j.watres.2010.02.039 CrossRefGoogle Scholar
  11. 11.
  12. 12.
    S. Siuleiman, N. Kaneva, A. Bojinova, K. Papazova, A. Apostolov, D. Dimitrov, Colloids Surf. A (2014).  https://doi.org/10.1016/j.colsurfa.2014.01.010 CrossRefGoogle Scholar
  13. 13.
    S. Bagheri, Z.A. Mohd Hir, A. Termeh Yousefi, S.B.A. Hamid, Microporous Mesoporous Mater. (2015).  https://doi.org/10.1016/j.micromeso.2015.05.028 CrossRefGoogle Scholar
  14. 14.
    H. Chaker, L. Chérif-Aouali, S. Khaoulani, A. Bengueddach, S. Fourmentin, J. Photochem. Photobiol. A (2016).  https://doi.org/10.1016/j.jphotochem.2015.11.025 CrossRefGoogle Scholar
  15. 15.
    I. Stambolova, M. Shipochka, V. Blaskov, A. Loukanov, S. Vassilev, J. Photochem. Photobiol. B (2012).  https://doi.org/10.1016/j.jphotobiol.2012.08.006 CrossRefGoogle Scholar
  16. 16.
    D. Wang, T. Xie, Y. Li, Nano Res. (2009).  https://doi.org/10.1007/s12274-009-9007-x CrossRefGoogle Scholar
  17. 17.
    A. Umar, M.S. Chauhan, S. Chauhan, R. Kumar, G. Kumar, S.A. Al-Sayari, S.W. Hwang, A. Al-Hajry, J. Colloid Interface Sci. (2011).  https://doi.org/10.1016/j.jcis.2011.07.058 CrossRefGoogle Scholar
  18. 18.
    Z. Jin, Y.X. Zhang, F.L. Meng, Y. Jia, T. Luo, X.Y. Yu, J. Wang, J.H. Liu, X.J. Huang, J. Hazard. Mater. (2014).  https://doi.org/10.1016/j.jhazmat.2014.05.059 CrossRefGoogle Scholar
  19. 19.
    M. Zhong, Y. Li, I. Yamada, J.-J. Delaunay, Nanoscale (2012).  https://doi.org/10.1039/c2nr11451h CrossRefGoogle Scholar
  20. 20.
    A. Hassanein, N. Salahuddin, A. Matsuda, G. Kawamura, M. Elfiky, Mater. Sci. Eng. C (2017).  https://doi.org/10.1016/j.msec.2017.04.101 CrossRefGoogle Scholar
  21. 21.
    F.M.A. Almuntaser, S. Majumder, P.K. Baviskar, J.V. Sali, B.R. Sankapal, Appl. Phys. A (2017).  https://doi.org/10.1007/s00339-017-1131-y CrossRefGoogle Scholar
  22. 22.
    R. Kant, C. Dwivedi, S. Pathak, V. Dutta, Appl. Surf. Sci. (2018).  https://doi.org/10.1016/j.apsusc.2018.03.208 CrossRefGoogle Scholar
  23. 23.
    P.K. Chen, G.J. Lee, S.H. Davies, S.J. Masten, R. Amutha, J.J. Wu, Mater. Res. Bull. (2013).  https://doi.org/10.1016/j.materresbull.2013.02.062 CrossRefGoogle Scholar
  24. 24.
    Z. Mohd Hir, A. Abdullah, Z. Zainal, H. Lim, Catalysts (2017).  https://doi.org/10.3390/catal7110313 CrossRefGoogle Scholar
  25. 25.
    V.M. Ovando-Medina, L. Farías-Cepeda, N.V. Pérez-Aguilar, J. Rivera de la Rosa, H. Martínez-Gutiérrez, A. Romero Galarza, E. Cervantes-González, N. Cayetano-Castro, Rev. Mex. Ing. Quim. (2018).  https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Ovando CrossRefGoogle Scholar
  26. 26.
    D.A. González-Casamachin, J. Rivera De la Rosa, C.J. Lucio-Ortiz, D.A. De Haro De, D.X. Rio, G.A. Martínez-Vargas, N.E. Flores-Escamilla, V.M. Dávila, E.Moctezuma-Velazquez Ovando-Medina, Chem. Eng. J. (2019).  https://doi.org/10.1016/j.cej.2019.05.032 CrossRefGoogle Scholar
  27. 27.
    S. Yagi, S. Kobayashi, T. Inoue, T. Hori, N. Michiba, K. Okui, SAE Tech. Paper (2003).  https://doi.org/10.4271/2003-01-0987 CrossRefGoogle Scholar
  28. 28.
    J. Xie, Y. Li, W. Zhao, L. Bian, Y. Wei, Powder Technol. (2011).  https://doi.org/10.1016/j.powtec.2010.10.019 CrossRefGoogle Scholar
  29. 29.
    V.M. Ovando-Medina, R.G. López, B.E. Castillo-Reyes, P.A. Alonso-Dávila, H. Martínez-Gutiérrez, O. González-Ortega, L. Farías-Cepeda, Colloid Polym. Sci. (2015).  https://doi.org/10.1007/s00396-015-3717-2 CrossRefGoogle Scholar
  30. 30.
    E.R. García, R.L. Medina, M.M. Lozano, I.H. Pérez, M.J. Valero, A.M. Maubert Franco, Materials (Basel) (2014).  https://doi.org/10.3390/ma7128037 CrossRefGoogle Scholar
  31. 31.
    S. Anandan, Y. Ikuma, K. Niwa, Solid State Phenom. (2010).  https://doi.org/10.4028/www.scientific.net/ssp.162.239 CrossRefGoogle Scholar
  32. 32.
    F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M. Ben Said, A. Ghrabi, R. Schneider, Mater. Des. (2016).  https://doi.org/10.1016/j.matdes.2016.04.015 CrossRefGoogle Scholar
  33. 33.
    A. Benaboud, M. Zaabat, M.S. Aida, B. Boudine, S. Benzitouni, T. Saidani, Optik (Stuttg) (2017).  https://doi.org/10.1016/j.ijleo.2017.06.108 CrossRefGoogle Scholar
  34. 34.
    D. Zhang, F. Zeng, J. Iran. Chem. Soc. (2017).  https://doi.org/10.1007/s13738-017-1142-9 CrossRefGoogle Scholar
  35. 35.
    Z. Balta, E. Bilgin Simsek, D. Berek, Photochem. Photobiol. (2019).  https://doi.org/10.1111/php.13117 CrossRefGoogle Scholar
  36. 36.
    E. Bilgin Simsek, P. Demircivi, D. Berek, I. Novak, React. Kinet. Mech. Catal. (2018).  https://doi.org/10.1007/s11144-017-1320-x CrossRefGoogle Scholar
  37. 37.
    P. Demircivi, E.B. Simsek, Water Sci. Technol. (2018).  https://doi.org/10.2166/wst.2018.298 CrossRefGoogle Scholar
  38. 38.
    F. Herrera, A. Lopez, G. Mascolo, P. Albers, J. Kiwi, Appl. Catal. B (2001).  https://doi.org/10.1016/S0926-3373(00)00198-3 CrossRefGoogle Scholar
  39. 39.
    S. Teixeira, P.M. Martins, S. Lanceros-Méndez, K. Kühn, G. Cuniberti, Appl. Surf. Sci. (2016).  https://doi.org/10.1016/j.apsusc.2016.05.073 CrossRefGoogle Scholar
  40. 40.
    Y. Liao, J. Brame, W. Que, Z. Xiu, H. Xie, Q. Li, M. Fabian, P.J. Alvarez, J. Hazard. Mater. (2013).  https://doi.org/10.1016/j.jhazmat.2013.05.047 CrossRefGoogle Scholar
  41. 41.
    D. Wang, Y. Wang, X. Li, Q. Luo, J. An, J. Yue, Catal. Commun. (2008).  https://doi.org/10.1016/j.catcom.2007.10.027 CrossRefGoogle Scholar
  42. 42.
    A.M. Huerta-Flores, I. Juárez-Ramírez, L.M. Torres-Martínez, J.E. Carrera-Crespo, T. Gómez-Bustamante, O. Sarabia-Ramos, J. Photochem. Photobiol. A (2018).  https://doi.org/10.1016/j.jphotochem.2017.12.029 CrossRefGoogle Scholar
  43. 43.
    D. Ramírez-Ortega, P. Acevedo-Peña, F. Tzompantzi, R. Arroyo, F. González, I. González, J. Mater. Sci. (2017).  https://doi.org/10.1007/s10853-016-0328-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical EngineeringCOARA – Autonomus University of San Luis PotosiMatehualaMexico
  2. 2.Instituto Politécnico Nacional-CNMNMexico CityMexico
  3. 3.Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA)Universidad Nacional de Río Cuarto (UNRC) – CONICETRío CuartoArgentina

Personalised recommendations