Skip to main content
Log in

Semiconducting polypyrrole@TiO2 pure anatase nanoparticles for photodegradation of reactive red 120 azo dye

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the recent years, the development of new and efficient materials for photocatalytic processes has been of growing interest for applications in wastewater treatment. In this sense, TiCl4 stabilized with H2SO4 was precipitated with ammonium hydroxide in the presence of sodium dodecyl sulfate and calcined to obtain thermally stable TiO2 nanoparticles, which were subsequently coated with semiconducting polypyrrole (PPy) by chemical oxidation resulting in a composite of TiO2@PPy. TiO2 and TiO2@PPy composite were characterized by SEM, Raman, XRD, UV/Vis–NIR, FTIR and TGA. It was observed that TiO2 consisted of spherical nanoparticles with number-average particle diameter of 19.2 nm and polydispersity index in sizes of 1.2, whereas TiO2@PPy composite consisted of agglomerated spherical PPy nanoparticles of number-average diameter of 182.4 nm coating TiO2 nanoparticles. The calculated optical bandgap of TiO2 was 3.07 eV, and it was demonstrated by the Rietveld refinement method of the XRD spectrum and from the Raman analysis that synthesized TiO2 corresponds to highly pure rhombic anatase crystal structure. TiO2@PPy composite was tested in the photodegradation of the reactive red 120 azo dye in aqueous solutions under visible light irradiation. It was observed that photodegradation rate increased with decreasing the initial dye concentration and increasing the composite load. Almost 100% of dye removal was achieved after 45 min of reaction for 20 mg L−1 of initial dye concentration and 1.0 g L−1 of composite load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. du Plessis, in Water as an Inescapable Risk, ed. by A. du Plessis (Springer, Cham, 2018), p. 13. https://doi.org/10.1007/978-3-030-03186-2_2

  2. D.E. McNabb, in Global Pathways to Water Sustainability, ed. y D.E. McNabb (Palgrave Macmillan, Cham, 2019), p. 3. https://doi.org/10.1007/978-3-030-04085-7_1

  3. T. Karthik, D. Gopalakrishnan, in Roadmap to Sustainable Textiles and Clothing, ed. by S. Muthu (Springer, Singapore,2014), p. 153. https://doi.org/10.1007/978-981-287-110-7_6

  4. A. Alinsafi, F. Evenou, E.M. Abdulkarim, M.N. Pons, O. Zahraa, A. Benhammou, A. Yaacoubi, A. Nejmeddine, Dye Pigment. (2007). https://doi.org/10.1016/j.dyepig.2006.02.024

    Article  Google Scholar 

  5. M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, J. Environ. Chem. Eng. (2019). https://doi.org/10.1016/j.jece.2019.103248

    Article  Google Scholar 

  6. N. Verma, S. Yadav, B. Marí, A. Mittal, J. Jindal, Trans. Indian Ceram. Soc. (2018). https://doi.org/10.1080/0371750X.2017.1417059

    Article  Google Scholar 

  7. G. Hitkari, S. Singh, G. Pandey, Trans Nonferrous Met Soc China (English Ed.). (2018) https://doi.org/10.1016/S1003-6326(18)64777-6

  8. A.L. Castro, M.R. Nunes, A.P. Carvalho, F.M. Costa, M.H. Florêncio, Solid State Sci. (2008). https://doi.org/10.1016/j.solidstatesciences.2007.10.012

    Article  Google Scholar 

  9. J. Ovenstone, K. Yanagisawa, Chem. Mater. (1999). https://doi.org/10.1021/cm990172z

    Article  Google Scholar 

  10. D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. De Coss, G. Oskam, Nanotechnology. (2008). https://doi.org/10.1088/0957-4484/19/14/145605

    Article  Google Scholar 

  11. W. Li, T. Zeng, PLoS ONE (2011). https://doi.org/10.1371/journal.pone.0021082

    Article  Google Scholar 

  12. N.N. Ilkhechi, M.R. Akbarpour, R. Yavari, Z. Azar, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7577-z

    Article  Google Scholar 

  13. N.N. Ilkhechi, B.K. Kaleji, J. Sol-Gel Sci. Technol. (2014). https://doi.org/10.1007/s10971-013-3224-1

    Article  Google Scholar 

  14. N.N. Ilkhechi, N. Ghobadi, J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-5353-0

    Article  Google Scholar 

  15. V. Abbasi-Chianeh, A. Mohammadzadeh, N.N. Ilkhechi, J. Aust. Ceram. Soc. (2019). https://doi.org/10.1007/s41779-018-0241-0

    Article  Google Scholar 

  16. N.N. Ilkhechi, N. Ghobadi, M.R. Akbarpour, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-016-6328-x

    Article  Google Scholar 

  17. A. Kundu, A. Mondal, Kinet. Appl. Clay Sci. (2019). https://doi.org/10.1016/j.clay.2019.105323

    Article  Google Scholar 

  18. A. Kundu, A. Mondal, SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-0280-3

    Article  Google Scholar 

  19. A. Kundu, A. Mondal, Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab22e8

    Article  Google Scholar 

  20. W. Li, D. Li, S. Meng, W. Chen, X. Fu, Y. Shao, Environ. Sci. Technol. (2011). https://doi.org/10.1021/es103041f

    Article  Google Scholar 

  21. S. Silvestri, T.A.L. Burgo, C. Dias-Ferreira, J.A. Labrincha, D.M. Tobaldi, React. Funct. Polym. (2020). https://doi.org/10.1016/j.reactfunctpolym.2019.104401

    Article  Google Scholar 

  22. F. Deng, L. Min, X. Luo, S. Wu, S. Luo, Nanoscale. (2013). https://doi.org/10.1039/c3nr02502k

    Article  Google Scholar 

  23. N.M. Dimitrijevic, S. Tepavcevic, Y. Liu, T. Rajh, S.C. Silver, D.M. Tiede, J. Phys. Chem. C. (2013). https://doi.org/10.1021/jp405562b

    Article  Google Scholar 

  24. L. Sun, Y. Shi, B. Li, X. Li, Y. Wang, Polym. Compos. (2013). https://doi.org/10.1002/pc.22515

    Article  Google Scholar 

  25. B.E. Castillo-Reyes, V.M. Ovando-Medina, O. González-Ortega, P.A. Alonso-Dávila, I. Juárez-Ramírez, H. Martínez-Gutiérrez, A. Márquez-Herrera, Res. Chem. Intermed. (2015). https://doi.org/10.1007/s11164-014-1886-0

    Article  Google Scholar 

  26. P.E. Díaz-Flores, C.J. Guzmán-Álvarez, V.M. Ovando-Medina, H. Martínez-Gutiérrez, O. González-Ortega, Desalin Water Treat. (2019). https://doi.org/10.5004/dwt.2019.24013

    Article  Google Scholar 

  27. A.G. Escobar-Villanueva, V.M. Ovando-Medina, H. Martínez-Gutiérrez, M.P. Militello, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-019-02644-8

    Article  Google Scholar 

  28. P. Scherrer, Nachr. Ges. Wiss. Gött. 26, 98 (1918)

    Google Scholar 

  29. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. (1978). https://doi.org/10.1107/s0021889878012844

    Article  Google Scholar 

  30. V. Uvarov, I. Popov, Mater. Charact. (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  Google Scholar 

  31. P. Villars, K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, I. Savysyuk, in Structure Types, ed. by P. Villars, K. Cenzual, (Springer, Berlin, 2010), p. 717 https://doi.org/10.1007/978-3-642-02702-4_497

  32. A. Orendorz, A. Brodyanski, J. Lösch, L.H. Bai, Z.H. Chen, Y.K. Le, C. Ziegler, H. Gnaser, Surf. Sci. (2007). https://doi.org/10.1016/j.susc.2007.04.127

    Article  Google Scholar 

  33. H.N.M. Ekramul Mahmud, A.K. Obidul Huq, R.B. Yahya, RSC Adv. (2016). https://doi.org/10.1039/c5ra24358k

    Article  Google Scholar 

  34. A. Kȩpas, M. Grzeszczuk, C. Kvarnström, T. Lindfors, A. Ivaska, Pol. J. Chem. 81, 2207 (2007)

    Google Scholar 

  35. D. Wang, Y. Wang, X. Li, Q. Luo, J. An, J. Yue, Catal. Commun. (2008). https://doi.org/10.1016/j.catcom.2007.10.027

    Article  Google Scholar 

  36. J.C. González-Iñiguez, V.M. Ovando-Medina, C.F. Jasso-Gastinel, D.A. González, J.E. Puig, E. Mendizábal, Colloid Polym. Sci. (2014). https://doi.org/10.1007/s00396-014-3177-0

    Article  Google Scholar 

  37. L.F. Marchesi, R.G. Freitas, E.R. Spada, F.R. Paula, M.S. Góes, J.R. Garcia, J. Solid State Electrochem. (2015). https://doi.org/10.1007/s10008-015-2848-1

    Article  Google Scholar 

  38. J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Seró, J. Am. Chem. Soc. (2004). https://doi.org/10.1021/ja047311k

    Article  Google Scholar 

  39. E. Prabakaran, S. Sambaza, K. Pillay (2020) https://doi.org/10.1007/978-3-030-16427-0_7.

  40. V.M. Ovando-Medina, J. Vizcaíno-Mercado, O. González-Ortega, J.A.R. De La Garza, H. Martínez-Gutiérrez, Polym. Compos. (2015). https://doi.org/10.1002/pc.22945

    Article  Google Scholar 

  41. A. Ananthashankar, Ghaly. Am. J. Eng. Appl. Sci. (2013). https://doi.org/10.3844/ajeassp.2013.252.262

    Article  Google Scholar 

  42. S.K. Sharma, H. Bhunia, P.K. Bajpai, J. Adv. Oxid. Technol. (2013). https://doi.org/10.1515/jaots-2013-0213

    Article  Google Scholar 

  43. T. Suwannaruang, K.K.P. Rivera, A. Neramittagapong, K. Wantala, Surf. Coat. Technol. (2015). https://doi.org/10.1016/j.surfcoat.2014.12.041

    Article  Google Scholar 

  44. D. Jiang, H. Zhao, S. Zhang, R. John, J. Catal. (2004). https://doi.org/10.1016/j.jcat.2004.01.030

    Article  Google Scholar 

  45. H. Zhao, D. Jiang, S. Zhang, W. Wen, J. Catal. (2007). https://doi.org/10.1016/j.jcat.2007.05.013

    Article  Google Scholar 

Download references

Acknowledgements

V.M. Ovando-Medina acknowledges to CONACYT-México (INFR-2017-01-280299; PDCPN 2015–384). Author E. G. Villabona-Leal acknowledges to Dr. A. Marquez-Herrera for the hospitality during the post-doctoral fellowship in the Universidad de Guanajuato (PRODEP-SEP #511-6/2019.-13033/México) and to Coordinación de Ingeniería Química of COARA-UASLP by the access to Laboratory of Unit Operations to perform the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Víctor M. Ovando-Medina or Adolfo Romero-Galarza.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villabona-Leal, E.G., Escobar-Villanueva, A.G., Ovando-Medina, V.M. et al. Semiconducting polypyrrole@TiO2 pure anatase nanoparticles for photodegradation of reactive red 120 azo dye. J Mater Sci: Mater Electron 31, 12178–12190 (2020). https://doi.org/10.1007/s10854-020-03764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03764-2

Navigation