Skip to main content
Log in

Photovoltaic effect on the microelectronic properties of perylene/p-Si heterojunction devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents the fabrication and study of light dependent electrical properties of heterojunction device based on small molecular semiconductor 3, 4, 9, 10-perylene tetracarboxylic anhydride (PTCDA). The Ag/PTCDA/P3HT/p-Si heterojunction device is prepared by spin coating a 20 nm layer of poly-3,hexylthiophene (P3HT) on p-Si followed by 80 nm thick film of PTCDA via thermal deposition. Current–voltage (IV) properties of the device are measured at room temperature in dark condition ~ 20 lx (lx) and different illumination conditions to probe photovoltaic effects on the microelectronic parameters of the device. In dark, the Ag/PTCDA/P3HT/p-Si device exhibited rectifying behavior in the forward bias with a current rectification ratio (RR) of 1990 at ± 3.5 V that confirmed the formation of depletion region. Key microelectronic parameters of the device such as ideality factor (n), barrier height (φb), series resistance (Rs) and shunt resistance (Rsh) are extracted from the IV characteristics and studied as a function of illumination (2–2700 lx). Charge conduction mechanism and mobility via interface of the device is also investigated from logI–logV curves and conventional IV characteristics, respectively. The microelectronic properties of the device are correlated with optical properties (absorption spectrum) and morphology of the PTCDA thin films carried out by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Fourier transformed infrared (FTIR) spectrum and energy dispersive x-rays (EDX) is performed to validate composition and elemental analysis of PTCDA films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Wahab, M.H. Sayyad, M. Tahir, F. Aziz, M. Shahid, M.A. Munawar, J.A. Chaudry, Electrical characterization of cobalt phthalocyanine/p-silicon heterojunction. Mater. Sci. Semicond. Process. 26, 101 (2014)

    CAS  Google Scholar 

  2. M. Tahir, M.H. Sayyad, F. Wahab, F. Aziz, I. Ullah, G. Khan, Enhancement in electrical properties of ITO/PEDOT: PSS/PTCDA/Ag by using calcium buffer layer. Phys. B 466, 38–43 (2015)

    Google Scholar 

  3. F. Muhammad, M. Tahir, M. Zeb, S.I. Uddin, S. Ahmed, Enhancement in the microelectronic properties of a PFB–CdSe quantum dots nanocomposite based Schottky barrier diode. J. Electron. Mater. 2019, 1–7 (2019)

    Google Scholar 

  4. E. Mohammadi-Arbati, S. Agbolaghi, Efficiency above 6% in poly (3-hexylthiophene): phenyl-C-butyric acid methyl ester photovoltaics via simultaneous addition of poly (3-hexylthiophene) based grafted graphene nanosheets and hydrophobic block copolymers. Polym. Int. (2019). https://doi.org/10.1002/pi.5816

    Article  Google Scholar 

  5. R. Frisenda, L. Parlato, M. Barra, H.S. van der Zant, A. Cassinese, Single-molecule break junctions based on a perylene-diimide cyano-functionalized (PDI8-CN 2) derivative. Nanoscale Res. Lett. 10, 305 (2015)

    Google Scholar 

  6. F. Wahab, M.H. Sayyad, D.N. Khan, M. Tahir, F. Aziz, R. Khan et al., Sensing properties of cobalt-phthalocyanine-based multipurpose sensor. J. Electron. Mater. 46, 2045–2052 (2017)

    CAS  Google Scholar 

  7. W. Brutting, Introduction to the Physics of Organic Semiconductors (WILEY-VCH Verlag GmbH, Weinheim, 2006)

    Google Scholar 

  8. C.C. Bof Bufon, J.D. Arias Espinoza, D.J. Thurmer, M. Bauer, C. Deneke, U. Zschieschang, H. Klauk, O.G. Schmidt, Hybrid organic/inorganic molecular heterojunctions based on strained nanomembranes. Nano Lett. 11, 3727–3733 (2011)

    CAS  Google Scholar 

  9. E.H. Rhoderick, R.H. William, Metal Semiconductor Contacts, 2nd edn. (Clarendon, Oxford, 1988)

    Google Scholar 

  10. M. Tahir, M.H. Sayyad, F. Wahab, F. Aziz, M. Shahid, M.A. Munawar, Perylene diimide: synthesis, fabrication and temperature dependent electrical characterization of heterojunction with p-silicon. Phys. B 426, 6–12 (2013)

    CAS  Google Scholar 

  11. C.V. Hoven, A. Garcia, G.C. Bazan, T.-Q. Nguyen, Recent applications of conjugated polyelectrolytes in optoelectronic devices. Adv. Mater. 20, 3793–3810 (2008)

    CAS  Google Scholar 

  12. Y. Shirota, Organic materials for electronic and optoelectronic devices. J. Mater. Chem. 10, 1–25 (2000)

    CAS  Google Scholar 

  13. H. Dong, H. Zhu, Q. Meng, X. Gong, W. Hu, Organic photoresponse materials and devices. Chem. Soc. Rev. 41, 1754–1808 (2012)

    CAS  Google Scholar 

  14. A. Hamdast, S. Agbolaghi, M. Zeighami, Y. Beygi-Khosrowshahi, R. Sarvari, Butterfly nanostructures via regioregularly grafted multi-walled carbon nanotubes and poly (3-hexylthiophene) to improve photovoltaic characteristics. Polym. Int. 68, 335–343 (2019)

    CAS  Google Scholar 

  15. M. Zeighami, S. Agbolaghi, A. Hamdast, R. Sarvari, Graphenic nanosheets sandwiched between crystalline cakes of poly (3-hexylthiophene) via simultaneous grafting/crystallization and their applications in active photovoltaic layers. J. Mater. Sci. 30, 7018–7030 (2019)

    CAS  Google Scholar 

  16. Y. Vertsimakha, P. Lutsyk, p-n Type Heterostructures Based on N, N′-Dimethyl Perylene-Tetracarboxylic Acid Diimide. Mol. Cryst. Liq. Cryst. 467, 107–122 (2007)

    CAS  Google Scholar 

  17. P.Y. Stakhira, V.V. Cherpak, D.Y. Volynyuk, Properties of heterojunction based on pentacene and perylene derivatives. Semiconductors 43, 192–196 (2009)

    CAS  Google Scholar 

  18. M. Mohamad, R. Ahmed, A. Shaari, S. Goumri-Said, Structure-dependent optoelectronic properties of perylene, di-indenoperylene (DIP) isolated molecule and DIP molecular crystal. Chem. Cent. J. 11, 125 (2017)

    Google Scholar 

  19. L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R.H. Friend, J.D. MacKenzie, Self-organized discotic liquid crystals for high-efficiency organicphotovoltaics. Science 293, 1119–1122 (2001)

    CAS  Google Scholar 

  20. Y. Cai, X. Guo, X. Sun, D. Wei, M. Yu, L. Huo et al., A twisted monomeric perylenediimide electron acceptor for efficient organic solar cells. Sci. China Mater. 59, 427–434 (2016)

    CAS  Google Scholar 

  21. F.J. Céspedes-Guirao, S. García-Santamaría, F. Fernández-Lázaro, A. Sastre-Santos, H.J. Bolink, Efficient electroluminescence from a perylenediimidefluorophore obtained from a simple solution processed OLED. J. Phys D 42, 105106 (2009)

    Google Scholar 

  22. Y.-S. Ma, C.-H. Wang, Y.-J. Zhao, Y. Yu, C.-X. Han, X.-J. Qiu, Z. Shi, Perylene diimidedyes aggregates: optical properties and packing behavior in solution and solid state. Supramol. Chem. 19, 141–149 (2007)

    CAS  Google Scholar 

  23. P. Yao, X. Yang, X. Xu, Y. Lu, H.-F. Ji, S. Dai, Morphologies and optical properties of nanostructures self-assembled from asymmetrical, amphiphilic perylene derivatives. J. Mater. Sci. 46, 188–195 (2011)

    CAS  Google Scholar 

  24. D. Volpati, A.E. Job, R.F. Aroca, C.J. Constantino, Molecular and morphological characterization of bis benzimidazo perylene films and surface-enhanced phenomena. J. Phys. Chem. B 112, 3894–3902 (2008)

    CAS  Google Scholar 

  25. M. Tahir, M.H. Sayyad, F. Wahab, D.N. Khan, The electrical characterization of Ag/N-BuHHPDI/p-Si heterojunction by current–voltage characteristics. Mod. Phys. Lett. B 27, 1350080 (2013)

    Google Scholar 

  26. U. Avcıbaşı, H. Dinçalp, T. Ünak, Y. Yıldırım, N. Avcıbaşı, Y. Duman et al., Preliminary tests of the radiopharmaceutical potential of N-(2, 6-diisopropylphenyl)-N’-(4-pyridyl)-perylene-3, 4, 9, 10-tetracarboxylic diimide radiolabeled with 131 I. J. Radioanal. Nucl. Chem. 273, 669 (2007)

    Google Scholar 

  27. M. Tahir, M.H. Sayyad, F. Wahab, F. Aziz, The electrical characterization of Ag/PTCDA/PEDOT: PSS/p-Si Schottky diode by current–voltage characteristics. Phys. B 415, 77–81 (2013)

    CAS  Google Scholar 

  28. M. Tahir, M.H. Sayyad, J. Clark, F. Wahab, F. Aziz, M. Shahid, M.A. Munawar, J.A. Chaudry, Humidity, light and temperature dependent characteristics of Au/N-BuHHPDI/Au surface type multifunctional sensor. Sens. Actuators, B 192, 565–571 (2014)

    CAS  Google Scholar 

  29. H. Langhals, U. Ritter-Faizade, P. Stadler, M. Havlicek, A. Hofer, N.S. Sariciftci, Persistent radical anions in the series of peri-arylenes: broadband light absorption until far in the NIR and purely organic magnetism. Monatshefte für Chemie-Chemical Monthly 150, 885–900 (2019)

    CAS  Google Scholar 

  30. K.S. Chan, T.J.E. Dwight, Photoluminescence, morphological and electrical properties of porous silicon formulated with different HNO3 concentrations. Results Phys. 10, 5–9 (2018)

    Google Scholar 

  31. S. Lee, F.M. Li, A. Nathan, Influence of surface energy and roughness on hole mobility in solution-processed hybrid organic thin film transistors. IEEE J. Electron Dev. Soc. 6, 653–657 (2018)

    CAS  Google Scholar 

  32. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)

    Google Scholar 

  33. K.J. Lee, J.H. Woo, E. Kim, Y. Xiao, X. Su, L.M. Mazur et al., Electronic energy and electron transfer processes in photoexcited donor–acceptor dyad and triad molecular systems based on triphenylene and perylene diimide units. Phys. Chem. Chem. Phys. 18, 7875–7887 (2016)

    CAS  Google Scholar 

  34. D.L. Pavia, G.M. Lampman, G.S. Kriz, Introduction to Spectroscopy, 3rd edn. (Books/Cole-Thomson Learning, Boston, 2001)

    Google Scholar 

  35. M. Tahir, M.H. Sayyad, F. Wahab, F. Aziz, I. Ullah, G. Khan, Enhancement in electrical properties of ITO/PEDOT:PSS/PTCDA/Ag by using calcium buffer layer. Phys. B 466–467, 38–43 (2015)

    Google Scholar 

  36. C. Martínez-Domingo, S. Conti, L. Terés, H.L. Gomes, E. Ramon, Novel flexible inkjet-printed Metal-Insulator-Semiconductor organic diode employing silver electrodes. Org. Electron. 62, 335–341 (2018)

    Google Scholar 

  37. M. Çalişkan, S.S. Yeşilkaya, M. Canlica, Characteristics of CoPc/CdS hybrid diode device. Bull. Mater. Sci. 38, 1439–1442 (2015)

    Google Scholar 

  38. V.R. Reddy, Electrical properties and conduction mechanism of an organic-modified Au/NiPc/n-InP Schottky barrier diode. Appl. Phys. A 116, 1379–1387 (2014)

    Google Scholar 

  39. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, Hoboken, 1981)

    Google Scholar 

  40. H.G.B. Olyaee, P.J. Foot, V. Montgomery, Electrical properties and I-V characteristics of 5, 14-dihydro-5, 7, 12, 14-tetraazapentacene doped Schottky barrier diode. J. Theor. Appl. Phys. 9, 315–319 (2015)

    Google Scholar 

  41. Ç. Oruç, A. Altındal, Comparative study of I-V methods to extract Au/FePc/p-Si Schottky barrier diode parameters. Appl. Phys. A 124, 81 (2018)

    Google Scholar 

  42. B. Singh, A. Sharma, S. Ghosh, Current transport mechanism in ZnO and metal phthalocyanine based inorganic/organic hybrid p–n junction diodes. J. Electron. Mater. 47, 5595–5600 (2018)

    CAS  Google Scholar 

  43. A. Banerjee, C. Ghosh, P. Chakraborty, Methyl red/indium-tin-oxide organic diode: an electrical and optoelectronic study. Microelectron. Eng. 216, 111053 (2019)

    CAS  Google Scholar 

  44. Y.S. Ocak, M. Kulakci, T. Kılıçoğlu, R. Turan, K. Akkılıç, Current–voltage and capacitance–voltage characteristics of a Sn/Methylene Blue/p-Si Schottky diode. Synth. Met. 159, 1603–1607 (2009)

    CAS  Google Scholar 

  45. Z. Chiguvare, J. Parisi, V. Dyakonov, Current limiting mechanisms in indium-tin-oxide/poly3-hexylthiophene/aluminum thin film devices. J. Appl. Phys. 94, 2440–2448 (2003)

    CAS  Google Scholar 

  46. M. Roy, P. Balraju, Y. Deol, R. Mishra, V. Choudhary, G. Sharma, Charge transportation and photo generation process in polythiophene functionalized with tin (II) phthalocyanine (SnPc-PT) thin film. Sol. Energy Mater. Sol. Cells 92, 1516–1525 (2008)

    CAS  Google Scholar 

  47. F. Gutman, H. Keyzer, L.E. Lyons, R.B. Smoano, Organic Semiconductors, Part B (Malabar, Florida, 1983)

    Google Scholar 

  48. A. Farag, I. Yahia, T. Wojtowicz, G. Karczewski, J. Phys. D 43, 215102 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Abdul Wali Khan University Mardan, Higher Education Commission (HEC), Pakistan and Cavendish Lab, University of Cambridge, UK for providing the research facilities for morphology and UV–vis studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tahir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, M., Muddusir, Khan, D.N. et al. Photovoltaic effect on the microelectronic properties of perylene/p-Si heterojunction devices. J Mater Sci: Mater Electron 30, 19463–19470 (2019). https://doi.org/10.1007/s10854-019-02310-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02310-z

Navigation