Skip to main content
Log in

Investigation photoelectric characteristics of ZnO/p-Si heterojunction structure modification with PCBM

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

[6,6]-Phenyl C61-butyric acid methyl ester (PCBM) is a good electron transport material and can be employed in optoelectronic application. To understand the effect of the amount ratio on the capacitive behaviors, the pristine ZnO, 3%, 5% and 10% amounts PCBM (low amount) added ZnO interfacial layered Al/ZnO:PCBM/p-Si heterojunction structures have been fabricated by sol–gel spin-coating method and characterized by X-ray diffraction (XRD), capacitance–voltage (C-V) and conductance-voltage (G-V) measurements for the frequency range between 10 kHz and 1 MHz. Some electrical parameters of the pristine ZnO and various PCBM added ZnO interlayered devices have been calculated from 1/C2-V (1/capacitance2-voltage) plots for various frequencies. Moreover, capacitance transient (C-t) and conductance-transient (G-t) measurements of the Al/ZnO:PCBM/p-Si devices have been performed for various light illumination intensities from 20 to 100 mW/cm2 with 20 mW/cm2 increments under light illumination which has whole spectral matching. The results revealed that PCBM amount has a great effect on capacitance and conductivity values of the Al/ZnO:PCBM/p-Si devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.H. Al Orainy, A.A. Hendi, Fabrication and electrical characterization of CdO/p-Si photosensors. Microelectron. Eng. 127, 14–20 (2014). https://doi.org/10.1016/j.mee.2014.02.014

    Article  Google Scholar 

  2. A. Kocyigit, M. Yılmaz, Ş Aydoğan, Ü. İncekara, The effect of measurements and layer coating homogeneity of AB on the Al/AB/p-Si devices. J. Alloys Compd. 790, 388–396 (2019). https://doi.org/10.1016/j.jallcom.2019.03.179

    Article  Google Scholar 

  3. R. Balakarthikeyan, A. Santhanam, R. Anandhi, S. Vinoth, A.M. Al-Baradi, Z.A. Alrowaili, M.S. Al-Buriahi, K. Deva Arun Kumar, Fabrication of nanostructured NiO and NiO: Cu thin films for high-performance ultraviolet photodetector. Opt. Mater. Amst. 120, 111387 (2021). https://doi.org/10.1016/j.optmat.2021.111387

    Article  Google Scholar 

  4. X. Zhou, L. Wang, X. Zhang, Y. Qiu, Direct and alternating electrical performance of TiO2/SiO2/p-Si heterojunction under visible illumination. Thin Solid Films 718, 138477 (2021). https://doi.org/10.1016/j.tsf.2020.138477

    Article  ADS  Google Scholar 

  5. A. Das Mahapatra, D. Basak, Investigation on sub-band gap defects aided UV to NIR broad-band low-intensity photodetection by SnO2 thin film. Sens. Actuators, A Phys. 312, 112168 (2020). https://doi.org/10.1016/j.sna.2020.112168

    Article  Google Scholar 

  6. F. Yakuphanoglu, Y. Caglar, M. Caglar, S. Ilican, ZnO/p-Si heterojunction photodiode by solgel deposition of nanostructure n-ZnO film on p-Si substrate. Mater. Sci. Semicond. Process. 13, 137–140 (2010). https://doi.org/10.1016/j.mssp.2010.05.005

    Article  Google Scholar 

  7. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morko̧, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1–103 (2005)

    Article  Google Scholar 

  8. Ü. Ozgur, D. Hofstetter, H. Morkoç, ZnO devices and applications: a review of current status and future prospects. Proc. IEEE 98, 1255–1268 (2010). https://doi.org/10.1109/JPROC.2010.2044550

    Article  Google Scholar 

  9. W. Gao, Z. Li, ZnO thin films produced by magnetron sputtering. Ceram. Int. 30, 1155–1159 (2004). https://doi.org/10.1016/j.ceramint.2003.12.197

    Article  Google Scholar 

  10. Y. Chen, D.M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization. J. Appl. Phys. 84, 3912–3918 (1998). https://doi.org/10.1063/1.368595

    Article  ADS  Google Scholar 

  11. J.N. Zeng, J.K. Low, Z.M. Ren, T. Liew, Y.F. Lu, Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl. Surf. Sci. 197–198, 362–367 (2002). https://doi.org/10.1016/S0169-4332(02)00425-7

    Article  ADS  Google Scholar 

  12. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. J. Appl. Phys. 98, 013505 (2005). https://doi.org/10.1063/1.1940137

    Article  ADS  Google Scholar 

  13. R. Ayouchi, F. Martin, D. Leinen, J.R. Ramos-Barrado, Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon. J. Cryst. Growth 247, 497–504 (2003). https://doi.org/10.1016/S0022-0248(02)01917-6

    Article  ADS  Google Scholar 

  14. S. Ilican, M. Caglar, Preparation and characterization of ZnO thin films deposited. J. Optoelectron. Adv. Mater. 10, 2578–2583 (2008)

    Google Scholar 

  15. J.Y. Lee, Y.S. Choi, J.H. Kim, M.O. Park, S. Im, Optimizing n-ZnO/p-Si heterojunctions for photodiode applications. Thin Solid Films 403–404, 553–557 (2002). https://doi.org/10.1016/S0040-6090(01)01550-4

    Article  Google Scholar 

  16. Ş Karataş, H.M. El-Nasser, A.A. Al-Ghamdi, F. Yakuphanoglu, High photoresponsivity Ru-doped ZnO/p-Si heterojunction diodes by the sol-gel method. SILICON 10, 651–658 (2018). https://doi.org/10.1007/s12633-016-9508-7

    Article  Google Scholar 

  17. S. Baturay, Y.S. Ocak, D. Kaya, The effect of Gd doping on the electrical and photoelectrical properties of Gd:ZnO/p-Si heterojunctions. J. Alloys Compd. 645, 29–33 (2015). https://doi.org/10.1016/j.jallcom.2015.04.212

    Article  Google Scholar 

  18. M. Yıldırım, A. Kocyigit, Characterization of Al/In:ZnO/p-Si photodiodes for various In doped level to ZnO interfacial layers. J. Alloys Compd. 768, 1064–1075 (2018). https://doi.org/10.1016/j.jallcom.2018.07.295

    Article  Google Scholar 

  19. B. Zimmermann, U. Würfel, M. Niggemann, Longterm stability of efficient inverted P3HT:PCBM solar cells. Sol. Energy Mater. Sol. Cells 93, 491–496 (2009). https://doi.org/10.1016/j.solmat.2008.12.022

    Article  Google Scholar 

  20. J.C. Hummelen, B.W. Knight, F. LePeq, F. Wudl, J. Yao, C.L. Wilkins, Preparation and characterization of fulleroid and methanofullerene derivatives. J. Org. Chem. 60, 532–538 (1995). https://doi.org/10.1021/jo00108a012

    Article  Google Scholar 

  21. F. Yakuphanoglu, Photovoltaic properties of hybrid organic/inorganic semiconductor photodiode. Synth. Met. 157, 859–862 (2007). https://doi.org/10.1016/j.synthmet.2007.08.012

    Article  Google Scholar 

  22. H.H. Gullu, D.E. Yildiz, A. Kocyigit, M. Yıldırım, Electrical properties of Al/PCBM:ZnO/p-Si heterojunction for photodiode application. J. Alloys Compd. 827, 154279 (2020). https://doi.org/10.1016/j.jallcom.2020.154279

    Article  Google Scholar 

  23. T. Öztürk, Effect of various PCBM doping on the interfacial layer of Al/PCBM:ZnO/p-Si photodiodes. J. Mater. Sci. Mater. Electron. 32, 10180–10193 (2021). https://doi.org/10.1007/s10854-021-05674-3

    Article  Google Scholar 

  24. S. Demirezen, H.G. Çetinkaya, Altındal doping rate, interface states and polarization effects on dielectric properties, electric modulus, and AC conductivity in PCBM/NiO:ZnO/p-Si structures in wide frequency range. SILICON 1, 1–11 (2022). https://doi.org/10.1007/s12633-021-01640-0

    Article  Google Scholar 

  25. H. Altan, M. Özer, H. Ezgin, Investigation of electrical parameters of Au/P3HT:PCBM/n-6H–SiC/Ag Schottky barrier diode with different current conduction models. Superlattices Microstruct. 146, 106658 (2020). https://doi.org/10.1016/j.spmi.2020.106658

    Article  Google Scholar 

  26. S. Cho, K.D. Kim, J. Heo, J.Y. Lee, G. Cha, B.Y. Seo, Y.D. Kim, Y.S. Kim, S.Y. Choi, D.C. Lim, Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells. Sci. Rep. 4, 1–6 (2014). https://doi.org/10.1038/srep04306

    Article  Google Scholar 

  27. S. Demirezen, H.G. Çetinkaya, M. Kara, F. Yakuphanoğlu, Ş Altındal, Synthesis, electrical and photo-sensing characteristics of the Al/(PCBM/NiO: ZnO)/p-Si nanocomposite structures. Sens. Actuators, A Phys. 317, 112449 (2021). https://doi.org/10.1016/j.sna.2020.112449

    Article  Google Scholar 

  28. B. Kadem, R.K. Fakher Alfahed, A.S. Al-Asadi, H.A. Badran, Morphological, structural, optical, and photovoltaic cell of copolymer P3HT: ICBA and P3HT:PCBM. Optik (Stuttg). 204, 164153 (2020). https://doi.org/10.1016/j.ijleo.2019.164153

    Article  ADS  Google Scholar 

  29. A.T. Mallajosyula, S. Sundar Kumar Iyer, B. Mazhari, Capacitance-voltage characteristics of P3HT:PCBM bulk heterojunction solar cells with ohmic contacts and the impact of single walled carbon nanotubes on them. Org. Electron. 13, 1158–1165 (2012). https://doi.org/10.1016/j.orgel.2012.03.018

    Article  Google Scholar 

  30. A. Sarkar, A. Bin Rahaman, D. Banerjee, Temperature dependent charge transport studies across thermodynamic glass transition in P3HT:PCBM bulk heterojunction: insight from J-V and impedance spectroscopy. J. Phys. D. Appl. Phys. 51, 095602 (2018). https://doi.org/10.1088/1361-6463/aaa87c

    Article  ADS  Google Scholar 

  31. S. Arora, V. Singh, M. Arora, R. Pal Tandon, Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell. Physica B 407, 3044–3046 (2012)

    Article  ADS  Google Scholar 

  32. H.H. Gullu, D.E. Yildiz, L. Toppare, A. Cirpan, Electrical characteristics of organic heterojunction with an alternating benzotriazole and fluorene containing copolymer. J. Mater. Sci. Mater. Electron. 31, 18816–18831 (2020). https://doi.org/10.1007/s10854-020-04421-4

    Article  Google Scholar 

  33. Ö. Tüzün Özmen, E. Yaǧlioǧlu, Electrical and interfacial properties of Au/P3HT:PCBM/n-Si Schottky barrier diodes at room temperature. Mater. Sci. Semicond. Process. 26, 448–454 (2014). https://doi.org/10.1016/j.mssp.2014.04.013

    Article  Google Scholar 

  34. F. Aslan, H. Esen, F. Yakuphanoglu, Electrical and fotoconducting characterization of Al/coumarin:ZnO/Al novel organic-inorganic hybrid photodiodes. J. Alloys Compd. 789, 595–606 (2019). https://doi.org/10.1016/j.jallcom.2019.03.090

    Article  Google Scholar 

  35. Z. Çaldıran, Modification of Schottky barrier height using an inorganic compound interface layer for various contact metals in the metal/p-Si device structure. J. Alloys Compd. 865, 158856 (2021). https://doi.org/10.1016/j.jallcom.2021.158856

    Article  Google Scholar 

  36. P.Y. Wu, J. Pike, F. Zhang, S.W. Chan, Low-temperature synthesis of zinc oxide nanoparticles. Int. J. Appl. Ceram. Technol. 3, 272–278 (2006). https://doi.org/10.1111/j.1744-7402.2006.02091.x

    Article  Google Scholar 

  37. S. Bai, J. Hu, D. Li, R. Luo, A. Chen, C.C. Liu, Quantum-sized ZnO nanoparticles: synthesis, characterization and sensing properties for NO2. J. Mater. Chem. 21, 12288–12294 (2011). https://doi.org/10.1039/c1jm11302j

    Article  Google Scholar 

  38. A. Rodrigues, M.C.R. Castro, A.S.F. Farinha, M. Oliveira, J.P.C. Tomé, A.V. Machado, M.M.M. Raposo, L. Hilliou, G. Bernardo, Thermal stability of P3HT and P3HT:PCBM blends in the molten state. Polym. Test. 32, 1192–1201 (2013). https://doi.org/10.1016/j.polymertesting.2013.07.008

    Article  Google Scholar 

  39. M. Bououdina, S. Azzaza, R. Ghomri, M.N. Shaikh, J.H. Dai, Y. Song, W. Song, W. Cai, M. Ghers, Structural and magnetic properties and DFT analysis of ZnO:(Al, Er) nanoparticles. RSC Adv. 7, 32931–32941 (2017). https://doi.org/10.1039/c7ra01015j

    Article  ADS  Google Scholar 

  40. C. Wang, H. Hao, D. Hashizume, K. Tajima, Surface-induced enantiomorphic crystallization of achiral fullerene derivatives in thin films. Chem. Sci. 11, 4702–4708 (2020). https://doi.org/10.1039/d0sc01163k

    Article  Google Scholar 

  41. Ö. Sevgili, Y. Azizian-Kalandaragh, Ş Altındal, Frequency and voltage dependence of electrical and dielectric properties in metal-interfacial layer-semiconductor (MIS) type structures. Phys. B Condens. Matter 587, 412122 (2020). https://doi.org/10.1016/j.physb.2020.412122

    Article  Google Scholar 

  42. M. Ulusoy, S. Altındal, Y. Azizian-Kalandaragh, S. Özçelik, Z. Mirzaei-Kalar, The electrical characteristic of an MIS structure with biocompatible minerals doped (Brushite+Monetite: PVC) interface layer. Microelectron. Eng. 258, 111768 (2022). https://doi.org/10.1016/j.mee.2022.111768

    Article  Google Scholar 

  43. M.O. Erdal, M. Yıldırım, A. Kocyigit, A comparison of the electrical characteristics of TiO2/p-Si/Ag, GNR-TiO2/p-Si/Ag and MWCNT-TiO2/p-Si/Ag photodiodes. J. Mater. Sci. Mater. Electron. 30, 13617–13626 (2019). https://doi.org/10.1007/s10854-019-01731-0

    Article  Google Scholar 

  44. M.O. Erdal, A. Kocyigit, M. Yıldırım, The C-V characteristics of TiO2/p-Si/Ag, GNR doped TiO2/p-Si/Ag and MWCNT doped TiO2/p-Si/Ag heterojunction devices. Chinese J. Phys. 64, 163–173 (2020). https://doi.org/10.1016/j.cjph.2019.12.021

    Article  ADS  Google Scholar 

  45. Ç.G. Türk, S.O. Tan, Ş Altındal, B. İnem, Frequency and voltage dependence of barrier height, surface states, and series resistance in Al/Al2O3/p-Si structures in wide range frequency and voltage. Phys. B Condens. Matter 582, 411979 (2020). https://doi.org/10.1016/j.physb.2019.411979

    Article  Google Scholar 

  46. S. Kaya, A. Aktag, E. Yilmaz, Effects of gamma-ray irradiation on interface states and series-resistance characteristics of BiFeO3 MOS capacitors. Nucl. Instrum. Methods Phys Res. Sect. B Beam Interact. Mater. Atoms 319, 44–47 (2014). https://doi.org/10.1016/j.nimb.2013.11.006

    Article  ADS  Google Scholar 

  47. M. Gökçen, H. Altuntaş, Ş Altındal, S. Özçelik, Frequency and voltage dependence of negative capacitance in Au/SiO2/n-GaAs structures. Mater. Sci. Semicond. Process. 15, 41–46 (2012). https://doi.org/10.1016/j.mssp.2011.08.001

    Article  Google Scholar 

  48. B.K. Jones, J. Santana, M. McPherson, Negative capacitance effects in semiconductor diodes. Solid State Commun. 107, 47–50 (1998). https://doi.org/10.1016/S0038-1098(98)00162-8

    Article  ADS  Google Scholar 

  49. A. Gadisa, K. Tvingstedt, K. Vandewal, F. Zhang, J.V. Manca, O. Inganäs, Bipolar charge transport in fullerene molecules in a bilayer and blend of polyfluorene copolymer and fullerene. Adv. Mater. 22, 1008–1011 (2010). https://doi.org/10.1002/adma.200902579

    Article  Google Scholar 

  50. D. Bartesaghi, M. Turbiez, L.J.A. Koster, Charge transport and recombination in PDPP5T:[70]PCBM organic solar cells: the influence of morphology. Org. Electron. 15, 3191–3202 (2014). https://doi.org/10.1016/j.orgel.2014.08.064

    Article  Google Scholar 

  51. D. Yang, X. Zhang, K. Wang, C. Wu, R. Yang, Y. Hou, Y. Jiang, S. Liu, S. Priya, Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers. Nano Lett. 19, 3313–3320 (2019). https://doi.org/10.1021/acs.nanolett.9b00936

    Article  ADS  Google Scholar 

  52. A. Turut, A. Karabulut, K. Ejderha, N. Bıyıklı, Capacitance–conductance–current–voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures. Mater. Sci. Semicond. Process. 39, 400–407 (2015). https://doi.org/10.1016/j.mssp.2015.05.025

    Article  Google Scholar 

  53. B.A. Prew, Physics of semiconductor devices. Phys. Bull. 26, 399–403 (1975). https://doi.org/10.1088/0031-9112/26/9/031

    Article  Google Scholar 

  54. S. Demirezen, Ş Altlndal, Y. Azizian-Kalandaragh, A.M. Akbaş, A comparison of Au/n-Si Schottky diodes (SDs) with/without a nanographite (NG) interfacial layer by considering interlayer, surface states (Nss) and series resistance (Rs) effects. Phys. Scr. 97, 055811 (2022). https://doi.org/10.1088/1402-4896/ac645f

    Article  ADS  Google Scholar 

  55. H.G. Çetinkaya, S. Demirezen, S. Altındal Yerişkin, Electrical parameters of Au/(%1Ni-PVA)/n-Si (MPS) structure: surface states and their lifetimes. Phys. B Condens. Matter 621, 413207 (2021). https://doi.org/10.1016/j.physb.2021.413207

    Article  Google Scholar 

  56. S. Altındal Yerişkin, Y. Şafak Asar, Influence of graphene doping rate in PVA organic thin film on the performance of Al/p-Si structure. J. Mater. Sci. Mater. Electron. 32, 22860–22867 (2021). https://doi.org/10.1007/s10854-021-06763-z

    Article  Google Scholar 

  57. M. Yıldırım, M.O. Erdal, A. Kocyigit, The effect of indium doping concentration on the electrical and dielectric properties of Al/In:ZnO/p-Si heterojunctions. Phys. B Condens. Matter 572, 153–160 (2019). https://doi.org/10.1016/j.physb.2019.07.055

    Article  ADS  Google Scholar 

  58. A.A.M. Farag, B. Gunduz, F. Yakuphanoglu, W.A. Farooq, Controlling of electrical characteristics of Al/p-Si Schottky diode by tris(8-hydroxyquinolinato) aluminum organic film. Synth. Met. 160, 2559–2563 (2010). https://doi.org/10.1016/j.synthmet.2010.10.005

    Article  Google Scholar 

  59. M. Yildirim, A. Kocyigit, A systematic study on the dielectric relaxation, electric modulus and electrical conductivity of Al/Cu:TiO2n -Si (MOS) structures/capacitors. Surf. Rev. Lett. 27, 1950217 (2020). https://doi.org/10.1142/S0218625X19502172

    Article  ADS  Google Scholar 

  60. W.A. Hill, C.C. Coleman, A single-frequency approximation for interface-state density determination. Solid. State. Electron. 23, 987–993 (1980). https://doi.org/10.1016/0038-1101(80)90064-7

    Article  ADS  Google Scholar 

  61. E.H. Nicollian, J.R. Brews, MOS (metal oxide semiconductor) physics and technology (John Wiley & Sons, Somerset, 2003)

    Google Scholar 

  62. Ç. Bilkan, Ş Altındal, Y. Azizian-Kalandaragh, Investigation of frequency and voltage dependence surface states and series resistance profiles using admittance measurements in Al/p-Si with Co3O4-PVA interlayer structures. Phys. B Condens. Matter 515, 28–33 (2017). https://doi.org/10.1016/J.PHYSB.2017.04.002

    Article  ADS  Google Scholar 

  63. S. Zeyrek, E. Acaroğlu, Ş Altındal, S. Birdoğan, M.M. Bülbül, The effect of series resistance and interface states on the frequency dependent C-V and G/w–V characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes. Curr. Appl. Phys. 13, 1225–1230 (2013). https://doi.org/10.1016/j.cap.2013.03.014

    Article  ADS  Google Scholar 

  64. M. Yıldırım, Characterization of the framework of Cu doped TiO2 layers: An insight into optical, electrical and photodiode parameters. J. Alloys Compd. 773, 890–904 (2019). https://doi.org/10.1016/J.JALLCOM.2018.09.276

    Article  Google Scholar 

  65. A. Kocyigit, M. Yıldırım, A. Sarılmaz, F. Ozel, The Au/Cu2WSe4/p-Si photodiode: electrical and morphological characterization. J. Alloys Compd. 780, 186–192 (2019). https://doi.org/10.1016/j.jallcom.2018.11.372

    Article  Google Scholar 

  66. M.O. Erdal, A. Kocyigit, M. Yıldırım, The rate of Cu doped TiO2 interlayer effects on the electrical characteristics of Al/Cu:TiO2/n-Si (MOS) capacitors depend on frequency and voltage. Microelectron. Reliab. 106, 113591 (2020). https://doi.org/10.1016/j.microrel.2020.113591

    Article  Google Scholar 

  67. U.K. Verma, S. Kumar, Y.N. Mohapatra, Measurement of contact surface photo-voltage from forward bias C-V characteristics of P3HT:PCBM based BHJ solar cells. Sol. Energy Mater. Sol. Cells 172, 25–33 (2017). https://doi.org/10.1016/j.solmat.2017.07.010

    Article  Google Scholar 

Download references

Funding

This work was supported by Selcuk University BAP office with Project Number 19401034.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.Y.; methodology, M.Y. and A.K.; investigation, M.Y. and A.K.; writing—original draft preparation, M.Y. and A.K.; writing—review, supervision and editing, M.Y. and A.K. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Adem Kocyigit.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldırım, M., Kocyigit, A. Investigation photoelectric characteristics of ZnO/p-Si heterojunction structure modification with PCBM. Appl. Phys. A 128, 700 (2022). https://doi.org/10.1007/s00339-022-05842-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05842-0

Keywords

Navigation