Skip to main content
Log in

Preparation and properties of humidity sensor based on K-doped ZnO nanostructure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

KxZn1−xO (X = 0%, 3%, 5%, 10%) nanowires have been synthesized through hydrothermal method and characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designed Ti/Au electrodes to fabricate the humidity sensors, and the humidity sensing properties of sensors were investigated. The experimental results show that K-doped ZnO humidity sensors exhibit more excellent humidity sensing than the undoped ZnO humidity sensor. Especially, 5% K-doped ZnO humidity sensor show the highest sensitivity, the response time reduced from 32 to 12 s, and have lower hysteresis and better reproducibility. The improvement of humidity sensing performance is explained by the increase of oxygen vacancy defects due to the K doping process. In addition, the sensing mechanism was analyzed by complex impedance spectroscopy and multilayer adsorption theory. These results demonstrate the potential application of K-doped ZnO nanowires for fabricating high performance humidity sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.S. Ismail, M.H. Mamat, I.B. Shameem Banu, M.F. Malek, M.M. Yusoff, R. Mohamed, W.R.W. Ahmad, M.A.R. Abdullah, NDMd Sin, A.B. Suriani, M.K. Ahmad, M. Rusop, Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties. J. Mater. Sci. 29, 12076–12088 (2018)

    CAS  Google Scholar 

  2. S. Ashokan, P. Jayamurugan, V. Ponnuswamy, Effects of CuO and Oxidant on the morphology and conducting properties of PANI:CuO hybrid nanocomposites for humidity sensor application. Polym. Sci. B 61, 86–97 (2019)

    CAS  Google Scholar 

  3. S.P. Gupta, A.S. Pawbake, B.R. Sathe, D.J. Late, P.S. Walke, Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature. Sens. Actuators B 293, 83–92 (2019)

    Article  CAS  Google Scholar 

  4. H. Li, B. Liu, D. Cai, Y. Wang, Y. Liu, L. Mei, L. Wang, D. Wang, Q. Li, T. Wang, High-temperature humidity sensors based on WO3–SnO2 composite hollow nanospheres. J. Mater. Chem. A 2, 6854–6862 (2014)

    Article  CAS  Google Scholar 

  5. V.K. Tomer, S. Duhan, A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sens. Actuators B 223, 750–760 (2016)

    Article  CAS  Google Scholar 

  6. X.-J. Yue, T.-S. Hong, X. Xu, Z. Li, High-performance humidity sensors based on double-layer ZnO-TiO2 nanofibers via electrospinning. Chin. Phys. Lett. 28, 090701 (2011)

    Article  CAS  Google Scholar 

  7. Q. Qi, Y.-C. Zou, M.-H. Fan, Y.-P. Liu, S. Gao, P.-P. Wang, Y. He, D.-J. Wang, G.-D. Li, Trimethylamine sensors with enhanced anti-humidity ability fabricated from La0.7Sr0.3FeO3 coated In2O3–SnO2 composite nanofibers. Sens. Actuators B 203, 111–117 (2014)

    Article  CAS  Google Scholar 

  8. K. Jayanthi, S. Chawla, K.N. Sood, M. Chhibara, S. Singh, Dopant induced morphology changes in ZnO nanocrystals. Appl. Surf. Sci. 255, 5869–5875 (2009)

    Article  CAS  Google Scholar 

  9. C. Lin, H. Zhang, J. Zhang, C. Chen, Enhancement of the humidity sensing performance in Mg-Doped hexagonal ZnO microspheres at room temperature. Sensors 19, 519 (2019)

    Article  CAS  Google Scholar 

  10. Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. 16, R829–R858 (2004)

    CAS  Google Scholar 

  11. R.N. Mariammal, K. Ramachandran, Increasing the reactive sites of ZnO nanoparticles by Li doping for ethanol sensing. Mater. Res. Express 6, 015024 (2018)

    Article  CAS  Google Scholar 

  12. M.A. Basyooni, M. Shaban, A.M. El Sayed, Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci. Rep. 7, 41716 (2017)

    Article  CAS  Google Scholar 

  13. S. Yu, H. Zhang, C. Lin, M. Bian, The enhancement of humidity sensing performance based on Eu-doped ZnO. Curr. Appl. Phys. 19, 82–88 (2019)

    Article  Google Scholar 

  14. X. Si, Y. Liu, X. Wu, W. Lei, J. Xu, W. Du, T. Zhou, J. Lin, The interaction between oxygen vacancies and doping atoms in ZnO. Mater. Des. 87, 969–973 (2015)

    Article  CAS  Google Scholar 

  15. A. Saaedi, R. Yousefi, Improvement of gas-sensing performance of ZnO nanorods by group-I elements doping. J. Appl. Phys. 122, 224505 (2017)

    Article  CAS  Google Scholar 

  16. M.K. Gupta, N. Sinha, B.K. Singh, B. Kumar, Synthesis of K-doped p-type ZnO nanorods along (100) for ferroelectric and dielectric applications. Mater. Lett. 64, 1825–1828 (2010)

    Article  CAS  Google Scholar 

  17. M.-L. Tu, Y.-K. Su, C.-Y. Ma, Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering. J. Appl. Phys. 100, 053705 (2006)

    Article  CAS  Google Scholar 

  18. W.-J. Lee, J. Kang, K.J. Chang, Defect properties and p-type doping efficiency in phosphorus-doped ZnO. Phys. Rev. B 73, 024117 (2006)

    Article  CAS  Google Scholar 

  19. G.Y. Huang, C.Y. Wang, J.T. Wang, First-principles study of diffusion of Li, Na, K and Ag in ZnO. J. Phys. Condens. Matter 21, 345802 (2009)

    Article  CAS  Google Scholar 

  20. S.-K. Kim, S.A. Kim, C.-H. Lee, H.-J. Lee, S.-Y. Jeong, C.R. Cho, The structural and optical behaviors of K-doped ZnO∕Al2O3(0001) films. Appl. Phys. Lett. 85, 419–421 (2004)

    Article  CAS  Google Scholar 

  21. M. Holzki, H. Fouckhardt, T. Klotzbücher, Evanescent-field fiber sensor for the water content in lubricating oils with sensitivity increase by dielectrophoresis. Sens. Actuators A 184, 93–97 (2012)

    Article  CAS  Google Scholar 

  22. N. Mohseni Kiasari, P. Servati, Dielectrophoresis-assembled ZnO nanowire oxygen sensors. IEEE Electron. Dev. Lett. 32, 982–984 (2011)

    Article  CAS  Google Scholar 

  23. L. Chen, J. Zhang, Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods. Sens. Actuators A 178, 88–93 (2012)

    Article  CAS  Google Scholar 

  24. W. Kim, M. Choi, K. Yong, Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sens. Actuators B 209, 989–996 (2015)

    Article  CAS  Google Scholar 

  25. H. Li, J. Zhang, B. Tao, L. Wan, W. Gong, Investigation of capacitive humidity sensing behavior of silicon nanowires. Physica E 41, 600–604 (2009)

    Article  CAS  Google Scholar 

  26. T. Nagata, T. Nakamura, R. Hayakawa, T. Yoshimura, S. Oh, N. Hiroshiba, T. Chikyow, N. Fujimura, Y. Wakayama, Photoelectron spectroscopic study on monolayer pentacene thin-film/polar ZnO single-crystal hybrid interface. Appl. Phys. Express 10, 025702 (2017)

    Article  Google Scholar 

  27. A. Saaedi, R. Yousefi, F. Jamali-Sheini, A.K. Zak, M. Cheraghizade, M.R. Mahmoudian, M.A. Baghchesara, A.S. Dezaki, XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticles under visible illumination conditions. Physica E 79, 113–118 (2016)

    Article  CAS  Google Scholar 

  28. W. Zhou, X. Tang, P. Xing, W. Liu, P. Wu, Possible room-temperature ferromagnetism in SnO2 nanocrystalline powders with nonmagnetic K doping. Phys. Lett. A 376, 203–206 (2012)

    Article  CAS  Google Scholar 

  29. M. Matsuguchi, S. Umeda, Y. Sadaoka, Y. Sakai, Characterization of polymers for a capacitive-type humidity sensor based on water sorption behavior. Sens. Actuators B 49, 179–185 (1998)

    Article  CAS  Google Scholar 

  30. N. Sun, Z. Ye, X. Kuang, W. Liu, G. Li, W. Bai, X. Tang, High sensitivity capacitive humidity sensors based on Zn1 − xNixO nanostructures and plausible sensing mechanism. J. Mater. Sci. 30, 1724–1738 (2018)

    Google Scholar 

  31. Q. Qi, T. Zhang, Y. Zeng, H. Yang, Humidity sensing properties of KCl-doped Cu–Zn/CuO–ZnO nanoparticles. Sens. Actuators B 137, 21–26 (2009)

    Article  CAS  Google Scholar 

  32. S. Agarwal, G.L. Sharma, Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal–electrochemical method. Sens. Actuators B 85, 205–211 (2002)

    Article  CAS  Google Scholar 

  33. N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995)

    Article  CAS  Google Scholar 

  34. J.H. Anderson, G.A. Parks, Electrical conductivity of silica gel in the presence of adsorbed water. J. Phys. Chem. 72, 3662–3668 (1968)

    Article  CAS  Google Scholar 

  35. Q. Qi, T. Zhang, S. Wang, X. Zheng, Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B 137, 649–655 (2009)

    Article  CAS  Google Scholar 

  36. A. Sharma, Y. Kumar, K. Mazumder, A.K. Rana, P.M. Shirage, Controlled Zn1 − xNixO nanostructures for an excellent humidity sensor and a plausible sensing mechanism. New J. Chem. 42, 8445–8457 (2018)

    Article  CAS  Google Scholar 

  37. C.D. Hatch, J.S. Wiese, C.C. Crane, K.J. Harris, H.G. Kloss, J. Baltrusaitis, Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models. Langmuir 28, 1790–1803 (2012)

    Article  CAS  Google Scholar 

  38. M.N. Nounou, H.N. Nounou, Multiscale estimation of the Freundlich adsorption isotherm. Int. J. Environ. Sci. Technol. 7, 509–518 (2010)

    Article  CAS  Google Scholar 

  39. N. Passe-Coutrin, S. Altenor, S. Gaspard, Assessment of the surface area occupied by molecules on activated carbon from liquid phase adsorption data from a combination of the BET and the Freundlich theories. J. Colloid Interface Sci. 332, 515–519 (2009)

    Article  CAS  Google Scholar 

  40. V.K. Tomer, N. Thangaraj, S. Gahlot, K. Kailasam, Cubic mesoporous Ag@CN: a high performance humidity sensor. Nanoscale 8, 19794–19803 (2016)

    Article  CAS  Google Scholar 

  41. L.X. Xia, Z. Shen, T. Vargas, W.J. Sun, R.M. Ruan, Z.D. Xie, G.Z. Qiu, Attachment of Acidithiobacillus ferrooxidans onto different solid substrates and fitting through Langmuir and Freundlich equations. Biotechnol. Lett. 35, 2129–2136 (2013)

    Article  CAS  Google Scholar 

  42. T. Yang, Y.Z. Yu, L.S. Zhu, X. Wu, X.H. Wang, J. Zhang, Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sens. Actuators B 208, 327–333 (2015)

    Article  CAS  Google Scholar 

  43. S. Yu, H. Zhang, C. Chen, C. Lin, Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle. Sens. Actuators B 287, 526–534 (2019)

    Article  CAS  Google Scholar 

  44. L.-X. Zhao, S.-E. Song, N. Du, W.-G. Hou, A sorbent concentration-dependent Freundlich isotherm. Colloid Polym. Sci. 291, 541–550 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61674058, 61604002), Open Fund of Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University (Grant No. 2019MIP002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijing Liu or Lei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Ye, Z., Sun, N. et al. Preparation and properties of humidity sensor based on K-doped ZnO nanostructure. J Mater Sci: Mater Electron 30, 18767–18779 (2019). https://doi.org/10.1007/s10854-019-02230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02230-y

Navigation