Skip to main content
Log in

Influence of MnCl2 on the properties of an amino acid complex single crystal-l-arginine perchlorate (LAPCl) for optical limiter applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The slow solvent evaporation technique has been employed for the synthesis of l-arginine perchlorate (LAPCl) single crystals. The grown crystals are doped with 1, 2 and 3 mol% of MnCl2. The Powder X-ray Diffraction (PXRD) analysis confirmed that the pure and doped crystals belong to the orthorhombic crystal system with non-centrosymmetric space group P212121. The incorporation of dopants has been confirmed by Laser-Induced Breakdown Spectroscopy (LIBS) and Energy Dispersive X-ray Analysis (EDX). The modification in the linear optical properties has been analyzed by measuring the cut off wavelength, band gap, Urbach energy and the refractive index of the pure and doped crystals. The changes in the nonlinearity of the LAPCl have been studied by open aperture Z-scan technique and found that two-photon absorption (2PA) coefficient increased with increasing the dopant concentration. The dielectric properties, electronic polarizability and thermal properties of the pure and doped crystals are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M.D. Aggarwal, J. Stephens, A.K. Batra, R.B. Lal, J. Optoelectron. Adv. Mater. 5, 555 (2003)

    Google Scholar 

  2. P. Anandan, G. Parthipan, T. Saravanan, R. Mohan Kumar, G. Bhagavannarayana, R. Jayavel, Phys. B Condens. Matter 405, 4951 (2010)

    Article  Google Scholar 

  3. P. Anandan, R. Jayavel, J. Cryst. Growth 322, 69 (2011)

    Article  Google Scholar 

  4. K. Selvaraju, R. Valluvan, K. Kirubavathi, S. Kumararaman, Opt. Commun. 269, 230 (2007)

    Article  Google Scholar 

  5. T. Balakrishnan, K. Ramamurthi, Spectrochim. Acta A 68, 360 (2007)

    Article  Google Scholar 

  6. M.K. Gupta, N. Sinha, B. Kumar, Phys. B 406, 63 (2011)

    Article  Google Scholar 

  7. V. Siva shankar, R. Siddheswaran, T. Bharthasarathi, P. Murugakoothan, J. Cryst. Growth 311, 2709 (2009)

    Article  Google Scholar 

  8. T. Kar, Prog. Cryst. Growth Charact. Mater. 58, 74 (2012)

    Article  Google Scholar 

  9. M. Lydia Caroline, G. Mani, S. Usha, Optik (Stuttg) 125, 5069 (2014)

    Article  Google Scholar 

  10. S.B. Monaco, L.E. Davis, S.P. Velsko, F.T. Wang, D. Eimerl, A. Zalkin, J. Cryst. Growth 85, 252 (1987)

    Article  Google Scholar 

  11. N. Srinivasan, R.K. Rajaram, Zeitschrift Fur Krist. New Cryst. Struct. 212, 311 (1997)

    Google Scholar 

  12. T. Mallik, T. Kar, J. Cryst. Growth 274, 251 (2005)

    Article  Google Scholar 

  13. S. Aruna, G. Bhagavannarayana, M. Palanisamy, P.C. Thomas, B. Varghese, P. Sagayaraj, J. Cryst. Growth 300, 403 (2007)

    Article  Google Scholar 

  14. Y. Kim, J. Mater. Sci. 35, 873 (2000)

    Article  Google Scholar 

  15. A.M. Petrosyan, Vib. Spectrosc. 41, 97 (2006)

    Article  Google Scholar 

  16. D. Kalaiselvi, R.M. Kumar, R. Jayavel, Cryst. Res. Technol. 43, 645 (2008)

    Article  Google Scholar 

  17. S. Aruna, A. Anuradha, P.C. Thomas, M.G. Mohamed, S.A. Rajasekar, M. Vimalan, G. Mani, P. Sagayaraj, Indian J. Pure Appl. Phys. 45, 524 (2007)

    Google Scholar 

  18. D. Manimaran, C. Jesintha John, V.K. Rastogi, I. Hubert, Joe, Spectrochim. Acta A 109, 173 (2013)

    Article  Google Scholar 

  19. A.S.H. Hameed, G. Ravi, M.M. Hossain, P. Ramasamy, J. Cryst. Growth 204, 333 (1999)

    Article  Google Scholar 

  20. S. Kar, R. Bhatt, K.S. Bartwal, V.K. Wadhawan, Cryst. Res. Technol. 39, 230 (2004)

    Article  Google Scholar 

  21. C. Krishnan, P. Selvarajan, T.H. Freeda, C.K. Mahadevan, Phys. B 404, 289 (2009)

    Article  Google Scholar 

  22. B. Suresh Kumar, M.R. Sudarsana Kumar, K. RajendraBabu, Cryst. Res. Technol. 43, 745 (2008)

    Article  Google Scholar 

  23. S. Rajyalakshmi, K. RamachandraRao, B. Brahmaji, K. Samatha, T.K. VisweswaraRao, G. Bhagavannarayana, Opt. Mater. (Amst). 54, 74 (2016)

    Article  Google Scholar 

  24. V.P. Sirkeli, D.D. Nedeoglo, N.D. Nedeoglo, I.V. Radevici, R.L. Sobolevskaia, K.D. Sushkevich, E. Lähderanta, A.V. Lashkul, R. Laiho, J.-P. Biethan, et al., Phys. B Condens. Matter 407, 3802 (2012)

    Article  Google Scholar 

  25. K.K. Nagaraja, S. Pramodini, A.S. Kumar, H.S. Nagaraja, P. Poornesh, D. Kekuda, Opt. Mater. (Amst). 35, 431 (2013)

    Article  Google Scholar 

  26. S.P. Raghavan, P. Ramasamy, Crystal Growth Processes and Methods (KRU Publications, Kumbokanam, 1999), pp. 151–158

    Google Scholar 

  27. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  Google Scholar 

  28. C.R. Groom, I.J. Bruno, M.P. Lightfoot, S.C. Ward, Acta Crystallogr. Sect. B 72, 171 (2016)

    Article  Google Scholar 

  29. C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P.A. Wood, J. Appl. Crystallogr. 41, 466 (2008)

    Article  Google Scholar 

  30. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Crystallogr. 46, 1231 (2013)

    Article  Google Scholar 

  31. K. Myakalwar, S. Sreedhar, I. Barman, N.C. Dingari, S. VenugopalRao, P. PremKiran, S.P. Tewari, and G. Manoj Kumar, Talanta87, 53 (2011)

  32. Atomic Spectra Database. (NIST 2018), https://www.nist.gov/pml/atomic-spectra-database. Accessed 7 November 2018

  33. D.E. Newbury, Scanning 31, 91 (2009)

    Article  Google Scholar 

  34. Interactive Periodic Table | EDAX.(Edax.Com2018),https://www.edax.com/resources/interactive-periodic-table#thumb. Accessed 6 November 2018

  35. J. Torrent, V. Barrón, Encyclopedia of Surface and Colloid Science (Taylor and Francis, New York, 2002), pp. 1438–1446

    Google Scholar 

  36. P. Kubelka, F. Munk, Z. Tech. Phys 12, 593 (1931)

    Google Scholar 

  37. G.G. Muley, P.S. Ambhore, A.B. Gambhire, Mater. Today Proc. 4, 9491 (2017)

    Article  Google Scholar 

  38. R.C. Santana, S.F.A. Cruz, M.C. Terrile, L.A.O. Nunes, J.F. Carvalho, Phys. B Condens. Matter 545, 390 (2018)

    Article  Google Scholar 

  39. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  40. A.E. Morales, E.S. Mora, U. Pal, Rev. Mex. Fis. S 53, 18 (2007)

    Google Scholar 

  41. R.R. Reddy, Y. NazeerAhammed, Infrared Phys. Technol. 36, 825 (1995)

    Article  Google Scholar 

  42. N. Sharma, K. Prabakar, S. Ilango, S. Dash, A.K. Tyagi, Adv. Mater. Proc. 2, 342 (2017)

    Article  Google Scholar 

  43. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  44. R.L. Sutherland, Handbook of Nonlinear Optics (CRC Press, Baco Raton, 1997)

    Google Scholar 

  45. A. Gowda, L. Jacob, N. Joy, R. Philip, R. Pratibha, S. Kumar, New J. Chem. 42, 2047 (2018)

    Article  Google Scholar 

  46. R. Philip, G.R. Kumar, N. Sandhyarani, T. Pradeep, Phys. Rev. B 62, 13160 (2000)

    Article  Google Scholar 

  47. N.M. Ravindra, V.K. Srivastava, Infrared Phys. 20, 67 (1980)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors acknowledges Council of Scientific and Industrial Research (CSIR) (Order No. 03 (1363)/16/EMR-II dated 11.05.2016) for funding this research project. We acknowledge Kerala State Council for Science, Technology and Environment (KSCSTE) (File No: No. 010-04/SARD/13/CSTE dated 27th November (2013) for funding to set up the facility for thermal studies under SARD scheme. One of the authors also thankful for the support of Science Engineering Research Board (SERB), New Delhi, India (YSS / 2014 / 000649 dated 20 November 2015) for funding the project. The authors are grateful to SAIF, Mahatma Gandhi University, Kottayam, for Photoluminescence studies. The authors are thankful to Edith Kieselhorst from the Electron Microscopy Center of the Carl von Ossietzky University, Oldenburg, Germany for supporting in SEM and EDX measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginson P. Joseph.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, P., Junjuri, R., Joy, N. et al. Influence of MnCl2 on the properties of an amino acid complex single crystal-l-arginine perchlorate (LAPCl) for optical limiter applications. J Mater Sci: Mater Electron 30, 8407–8421 (2019). https://doi.org/10.1007/s10854-019-01158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01158-7

Navigation