Advertisement

Butanol-assisted solvent annealing of CH3NH3PbI3 film for high-efficient perovskite solar cells

  • Junpeng Mou
  • Jian SongEmail author
  • Min Che
  • Yan Liu
  • Yongshan Qin
  • Heming Liu
  • Lei Zhu
  • Yulong Zhao
  • Yinghuai QiangEmail author
Article
  • 82 Downloads

Abstract

Due to the characteristics of low cost, simple process and high conversion efficiency, perovskite solar cells have become a research hotspot in recent years. In the structure of perovskite solar cell, perovskite active film plays an important role in sunlight absorption and electron–hole pair generation. This work focused on improving the quality of perovskite film by solvent annealing of perovskite film prepared with two-step spin-coating method. We chose n-butanol, a solvent with high boiling point, as an additive in CH3NH3I/isopropanol solution to execute the solvent annealing process. UV–Vis absorption spectra exhibited an enhancement in the absorbance of perovskite films with solvent annealing process. X-ray diffraction and scanning electron microscope measurements indicated that perovskite film had larger grain size after solvent annealing, especially when n-butanol content reached to 2% in the mixed solvents. The photovoltaic performance of perovskite solar cell was improved from 13.50% to the optimized 14.81%. This solvent annealing process could restrain the fast evaporation of solvent in CH3NH3I solution which is beneficial for perovskite film growth. It is found that this method has certain significance for the quality improvement of the perovskite film.

Notes

Acknowledgements

We appreciate the financial supports from Natural Science Foundation of Jiangsu Province (Grant No. BK20160262), the Fundamental Research Funds for the Central Universities (Grant No. 2015XKMS067), and the China Postdoctoral Science Foundation (Grant No. 2016M591952).

Supplementary material

10854_2018_343_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1553 KB)

References

  1. 1.
    S. Dharani, H.K. Mulmudi, N. Yantara, P.T.T. Trang, N.G. Park, M. Graetzel, S. Mhaisalkar, N. Mathews, P.P. Boix, Nanoscale 6, 1675 (2014)CrossRefGoogle Scholar
  2. 2.
    T. Marimuthu, N. Anandhan, R. Thangamuthu, S. Surya, J. Alloys Compd. 693, 1011 (2017)CrossRefGoogle Scholar
  3. 3.
    L.Z. Liu, Y.Q. Chen, T.B. Guo, Y.Q. Zhu, Y. Su, C. Jia, M.Q. Wei, Y.F. Cheng, ACS Appl. Mater. Interfaces 4, 17 (2012)CrossRefGoogle Scholar
  4. 4.
    T.J. Jacobsson, T. Edvinsson, J. Phys. Chem. C 116, 15692 (2012)CrossRefGoogle Scholar
  5. 5.
    V. Manthina, J.P.C. Baena, G.L. Liu, A.G. Agrios, J. Phys. Chem. C 116, 23864 (2012)CrossRefGoogle Scholar
  6. 6.
    H. Zhang, C. Wang, W.X. Peng, C. Yang, X.H. Zhong, Nano Energy 23, 60 (2016)CrossRefGoogle Scholar
  7. 7.
    H. Sirringhaus, Adv. Mater. 17, 2411 (2005)CrossRefGoogle Scholar
  8. 8.
    J.E. Kroeze, T.J. Savenije, M.J.W. Vermeulen, J.M. Warman, J. Phys. Chem. B. 107, 7696 (2003)CrossRefGoogle Scholar
  9. 9.
    J.J. Shi, Y.H. Luo, H.Y. Wei, J.H. Luo, J. Dong, S.T. Lv, J.Y. Xiao, Y.Z. Xu, L.F. Zhu, X. Xu, ACS Appl. Mater. Interfaces 6, 9711 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Yang, J. Song, Y.L. Zhao, L. Zhu, X.Q. Gu, Y.Q. Gu, M. Che, Y.H. Qiang, J. Alloys Compd. 684, 680 (2016)Google Scholar
  11. 11.
    J. Song, Y. Yang, Y.L. Zhao, M. Che, L. Zhu, X.Q. Gu, Y.H. Qiang, Mater. Sci. Eng. B 217, 18 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Wang, L. Zhu, B. Zhao, Y. Zhao, J. Song, X. Gu, Y. Qiang, Sci. Rep. 7, 14478 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Xi, Z. Wu, K. Xi, H. Dong, B. Xia, T. Lei, F. Yuan, W. Wu, B. Jiao, X. Hou, Nano Energy 26, 438 (2016)CrossRefGoogle Scholar
  14. 14.
    B. Xia, Z. Wu, H. Dong, J. Xi, W. Wu, T. Lei, K. Xi, F. Yuan, B. Jiao, L. Xiao, Q. Gong, X. Hou, J. Mater. Chem. A 4, 6295 (2016)CrossRefGoogle Scholar
  15. 15.
    C.F. Lan, J.T. Luo, S. Zhao, C. Zhang, W.G. Liu, S.Z. Hayase, T.L. Ma, J. Alloys Compd. 701, 834 (2017)CrossRefGoogle Scholar
  16. 16.
    Y.T. Shi, Y.J. Xing, Y. Li, Q.S. Dong, K. Wang, Y. Du, X.G. Bai, S.F. Wang, Z.J. Chen, T.L. Ma, J. Phys. Chem. C 119, 15868 (2015)CrossRefGoogle Scholar
  17. 17.
    D. Khatiwada, S. Venkatesan, N. Adhikari, A. Dubey, A. Mitul, L. Mohammad, A. Iefanova, S.B. Darling, Q.Q. Qiao, J. Phys. Chem. C 119, 25747 (2015)CrossRefGoogle Scholar
  18. 18.
    Y.Z. Wu, A. Islam, X.D. Yang, C.J. Qin, J. Liu, K. Zhang, W.Q. Peng, L.Y. Han, Energy Environ. Sci. 7, 2934 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Mabrouk, A. Dubey, W.F. Zhang, N. Adhikari, B. Bahrami, M.N. Hasan, S.F. Yang, Q.Q. Qiao, J. Phys. Chem. C 120, 24577 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Zhang, J. Mao, H.X. He, D. Zhang, H.L. Zhu, F.X. Xie, K.S. Wong, M. Grätzel, W.C.H. Choy, Adv. Eng. Mater. 5, 1501354 (2015)CrossRefGoogle Scholar
  21. 21.
    N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, N.G. Park, J. Am. Chem. Soc. 137, 8696 (2015)CrossRefGoogle Scholar
  22. 22.
    Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Adv. Mater. 26, 6503 (2014)CrossRefGoogle Scholar
  23. 23.
    B.G. Zhao, L. Zhu, Y.L. Zhao, Y. Yang, J. Song, X.Q. Gu, Z. Xing, Y.H. Qiang, J. Mater. Sci.: Mater. Electron. 27, 10869 (2016)Google Scholar
  24. 24.
    S.P. Li, Y.L. Zhao, X.Q. Gu, Y.H. Qiang, N. Tan, J. Mater. Sci.: Mater. Electeon. 28, 13626 (2017)Google Scholar
  25. 25.
    X. Liu, X.X. Xia, Q.Q. Cai, F.L. Cai, L.Y. Yang, Y. Yan, T. Wang, Sol. Energy Mater. Sol. Cells 159, 143 (2017)CrossRefGoogle Scholar
  26. 26.
    J. Song, S.P. Li, Y.L. Zhao, J. Yuan, Y. Fang, L. Zhu, X.Q. Gu, Y.H. Qiang, J. Alloys Compd. 694, 1232 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Che, L. Zhu, Y.L. Zhao, D.S. Yao, X.Q. Gu, J. Song, Y.H. Qiang, Mater. Sci. Semicond. Process. 56, 29 (2016)CrossRefGoogle Scholar
  28. 28.
    Q. Zhao, G.R. Li, J. Song, Y. Zhao, Y. Qiang, X.P. Gao, Sci. Rep. 6, 38670 (2016)CrossRefGoogle Scholar
  29. 29.
    B.X. Chen, H.S. Rao, W.G. Li, Y.F. Xu, H.Y. Chen, D.B. Kuang, C.Y. Su, J. Mater. Chem. A 4, 5647 (2016)CrossRefGoogle Scholar
  30. 30.
    H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.W. Wang, K. Wojciechowski, W. Zhang, J. Phys. Chem. Lett. 5, 1511 (2014)CrossRefGoogle Scholar
  31. 31.
    H.-S. Kim, N.-G. Park, J. Phys. Chem. Lett. 5, 2927 (2014)CrossRefGoogle Scholar
  32. 32.
    N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Grätzel, Science 358, 768 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Junpeng Mou
    • 1
    • 2
    • 3
  • Jian Song
    • 1
    • 2
    • 3
    Email author
  • Min Che
    • 1
    • 2
    • 3
  • Yan Liu
    • 1
    • 2
    • 3
  • Yongshan Qin
    • 1
    • 2
    • 3
  • Heming Liu
    • 1
    • 2
    • 3
  • Lei Zhu
    • 1
    • 2
    • 3
  • Yulong Zhao
    • 1
    • 2
    • 3
  • Yinghuai Qiang
    • 1
    • 2
    • 3
    Email author
  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina
  2. 2.The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and EquipmentsChina University of Mining and TechnologyXuzhouChina
  3. 3.The Xuzhou City Key Laboratory of High Efficient Energy Storage Technology and EquipmentsChina University of Mining and TechnologyXuzhouChina

Personalised recommendations