Skip to main content
Log in

Improvement of Perovskite CH3NH3PbI3 Films on Crystallization for Efficient Perovskite Solar Cells with Low-Temperature Anti-solvent Approach

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of anti-solvent IPA (isopropyl alcohol, C3H8O) treatment at low temperatures on the crystallization of perovskite CH3NH3PbI3 (MAPbI3) films has been investigated. It has been indicated that both the grain size in the films and the crystalline quality of the films are improved by using anti-solvent IPA treatment at 250 K, in comparison with the treatment at 300 K (room temperature). The improvement on the film crystalline quality has also been demonstrated from the performance enhancement of fabricated solar cells, as indicated by the power conversion efficiency (PCE) of 19.65% and 17.2% for the cells with films treated at 250 K and 300 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. G. Wang, D. Liu, J. Xiang, D. Zhou, K. Alameh, B. Ding, and Q. Song, Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating. RSC Adv. 6, 43299 (2016).

    Article  CAS  Google Scholar 

  2. C. Li, Q. Guo, W. Qiao, Q. Chen, S. Ma, X. Pan, F. Wang, J. Yao, C. Zhang, and M. Xiao, Efficient lead acetate sourced planar heterojunction perovskite solar cells with enhanced substrate coverage via one-step spin-coating. Org. Electron. 33, 194 (2016).

    Article  Google Scholar 

  3. Y. Ren, B. Duan, Y. Xu, Y. Huang, Z. Li, L. Hu, T. Hayat, H. Wang, J. Zhu, and S. Dai, New insight into solvent engineering technology from evolution of intermediates via one-step spin-coating approach. Sci. China Mater. 60, 392 (2017).

    Article  CAS  Google Scholar 

  4. S. Pratap, F. Babbe, N.S. Barchi, Z. Yuan, T. Luong, Z. Haber, T.-B. Song, J.L. Slack, C.V. Stan, and N. Tamura, Out-of-equilibrium processes in crystallization of organic-inorganic perovskites during spin coating. Nat. Commun. 12, 5624 (2021).

    Article  CAS  Google Scholar 

  5. L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, Precisely controlled hydration water for performance improvement of organic–inorganic perovskite solar cells. Adv. Func. Mater. 26, 5028 (2016).

    Article  CAS  Google Scholar 

  6. Y.-N. Zhang, B. Li, L. Fu, and L.-W. Yin, One-step-spin-coating route for homogeneous perovskite/pyrrole-C60 fullerene bulk heterojunction for high performance solar cells. J. Power Sources 419, 27 (2019).

    Article  CAS  Google Scholar 

  7. S. Chen, X. Xiao, B. Chen, L.L. Kelly, J. Zhao, Y. Lin, M.F. Toney, and J. Huang, Crystallization in one-step solution deposition of perovskite films: upward or downward? Sci. Adv. 7, eabb2412 (2021).

    Article  CAS  Google Scholar 

  8. K. Schötz, C. Greve, A. Langen, H. Gorter, I. Dogan, Y. Galagan, A.J. van Breemen, G.H. Gelinck, E.M. Herzig, and F. Panzer, Understanding differences in the crystallization kinetics between one-step slot-die coating and spin coating of MAPbI3 using multimodal in situ optical spectroscopy. Adv. Optic. Mater. 9, 2101161 (2021).

    Article  Google Scholar 

  9. Y.-K. Ren, S.-D. Liu, B. Duan, Y.-F. Xu, Z.-Q. Li, Y. Huang, L.-H. Hu, J. Zhu, and S.-Y. Dai, Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin-coating. J. Alloys. Compd. 705, 205 (2017).

    Article  CAS  Google Scholar 

  10. M. Wang, Y. Feng, J. Bian, H. Liu, and Y. Shi, A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell. Chem. Phys. Lett. 692, 44 (2018).

    Article  CAS  Google Scholar 

  11. N. Zhang, Z. Zhang, T. Liu, T. He, P. Liu, J. Li, F. Yang, G. Song, Z. Liu, and M. Yuan, Efficient and stable MAPbI3 perovskite solar cells via green anti-solvent diethyl carbonate. Org. Electron. 113, 106709 (2023).

    Article  CAS  Google Scholar 

  12. F. Bisconti, A. Giuri, R. Suhonen, T.M. Kraft, M. Ylikunnari, V. Holappa, P. Biagini, A. Savoini, G. Marra, and S. Colella, One-step polymer assisted roll-to-roll gravure-printed perovskite solar cells without using anti-solvent bathing. Cell Rep. Phys. Sci. 2, 100639 (2021).

    Article  CAS  Google Scholar 

  13. S.H. Chang, W.-C. Huang, C.-C. Chen, S.-H. Chen, and C.-G. Wu, Effects of anti-solvent (iodobenzene) volume on the formation of CH3NH3PbI3 thin films and their application in photovoltaic cells. Appl. Surf. Sci. 445, 24 (2018).

    Article  CAS  Google Scholar 

  14. Z. Wang, L. Liu, Y. Wang, Y. Ma, Z. Yang, M. Wan, H. Zhu, T. Mahmoudi, Y.-B. Hahn, and Y. Mai, Green antisolvent-mediators stabilize perovskites for efficient NiOx-based inverted solar cells with Voc approaching 1.2 V. Chem. Eng. J. 457, 141204 (2023).

    Article  CAS  Google Scholar 

  15. W. Xu, Y. Gao, W. Ming, F. He, J. Li, X.H. Zhu, F. Kang, J. Li, and G. Wei, Suppressing defects-induced nonradiative recombination for efficient perovskite solar cells through green antisolvent engineering. Adv. Mater. 32, 2003965 (2020).

    Article  CAS  Google Scholar 

  16. X. Zhang, X. Li, L. Tao, Z. Zhang, H. Ling, X. Fu, S. Wang, M.J. Ko, J. Luo, and J. Chen, Precise control of crystallization and phase-transition with green anti-solvent in wide-bandgap perovskite solar cells with open-circuit voltage exceeding 1.25 V. Small (2023). https://doi.org/10.1002/smll.202208289.

    Article  Google Scholar 

  17. G. Jang, H.C. Kwon, S. Ma, S.C. Yun, H. Yang, and J. Moon, Cold antisolvent bathing derived highly efficient large-area perovskite solar cells. Adv. Energy Mater. 9(36), 1901719 (2019).

    Article  Google Scholar 

  18. J. Sin, H. Kim, M. Kim, M. Kim, J. Shin, J. Hong, and J. Yang, Anti-solvent treatment time approach to high efficiency perovskite solar cells with temperature of coating environmental. Solar Energy Mater. Solar Cells 250, 112054 (2023).

    Article  CAS  Google Scholar 

  19. H. Zhang, C. Zhao, D. Li, H. Guo, F. Liao, W. Cao, X. Niu, and Y. Zhao, Effects of substrate temperature on the crystallization process and properties of mixed-ion perovskite layers. J. Mater. Chem. A 7, 2804 (2019).

    Article  CAS  Google Scholar 

  20. Y.K. Ren, X.H. Ding, Y.H. Wu, J. Zhu, T. Hayat, A. Alsaedi, Y.F. Xu, Z.Q. Li, S.F. Yang, and S.Y. Dai, Temperature-assisted rapid nucleation: a facile method to optimize the film morphology for perovskite solar cells. J. Mater. Chem. A 5, 20327 (2017).

    Article  CAS  Google Scholar 

  21. J.-W. Lee, H.-S. Kim, and N.-G. Park, Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311 (2016).

    Article  Google Scholar 

  22. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes. Appl. Phys. Express 7, 032302 (2014).

    Article  CAS  Google Scholar 

  23. N. Ashcroft and N. Mermin, Solid state physics (Saunders College, Philadelphia). Google Scholar 404 (1976).

  24. H.H. Fang, R. Raissa, M. Abdu-Aguye, S. Adjokatse, G.R. Blake, J. Even, and M.A. Loi, Photophysics of organic–inorganic hybrid lead iodide perovskite single crystals. Adv. Funct. Mater. 25, 2378 (2015).

    Article  CAS  Google Scholar 

  25. J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. Van Schilfgaarde, and A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584 (2014).

    Article  CAS  Google Scholar 

  26. B.J. Foley, D.L. Marlowe, K. Sun, W.A. Saidi, L. Scudiero, M.C. Gupta, and J.J. Choi, Temperature dependent energy levels of methylammonium lead iodide perovskite. Appl. Phys. Lett. 106, 243904 (2015).

    Article  Google Scholar 

  27. C. Quarti, E. Mosconi, J.M. Ball, V. D’Innocenzo, C. Tao, S. Pathak, H.J. Snaith, A. Petrozza, and F. De Angelis, Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy Environ. Sci. 9, 155 (2016).

    Article  CAS  Google Scholar 

  28. P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots. J. Phys. Chem. C 113, 13545 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support by the National Natural Science Foundation of China (No 11874200 and 12204245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Jiang, J., Wu, X. et al. Improvement of Perovskite CH3NH3PbI3 Films on Crystallization for Efficient Perovskite Solar Cells with Low-Temperature Anti-solvent Approach. J. Electron. Mater. 53, 86–93 (2024). https://doi.org/10.1007/s11664-023-10772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10772-5

Keywords

Navigation