Advertisement

Enhanced electrochemical performance of few-layered MoS2–rGO nanocomposite for lithium storage application

  • Shivaraj B. Patil
  • M. S. Raghu
  • Brij Kishore
  • G. NagarajuEmail author
Article
  • 44 Downloads

Abstract

Molybdenum disulphide, a two dimensional unique layered material with natural hexagonal structure with adjoining layers connected by Mo–S covalent bonds, and stacked by weak van der Waals forces is similar to graphite. It has adjoining layer spacing of 0.615 nm which is significantly wider than graphite (0.333 nm) and is fabricated by simple inert annealing process. The synthesized MoS2 is composited with reduced graphene oxide sheets in 1:1 ratio to enhance its electrochemical performance by improving electrical conductivity. MoS2–rGO nanocomposite manifested a high specific discharge capacity of 1523 mAh g−1 at 70 mA g−1 and sustained a capacity of 1270 mAh g−1 at the end of 200 charge–discharge cycles demonstrating an excellent stability of the material. Nevertheless, the nanocomposite material also exhibited phenomenal rate capability by displaying specific capacities of 400 and 300 mAh g−1 at high current densities of 700 and 1400 mA g−1, respectively.

Notes

Acknowledgements

GN and SBP greatly thank BRNS-BARC, DAE (No.: 37(2)/14/25/2015/BRNS) Bombay, Govt. of India for financial sponsorship. Thanks to CoE - TEQIP, Director and Principal, Siddaganga Institute of Technology (SIT), Tumakuru for constant support and encouragement. Thanks to Prof. N. Munichandraiah, Dept. of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore for providing glove box facility to assemble the cells.

Supplementary material

10854_2018_295_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1499 KB)

References

  1. 1.
    L. Hu, Y. Ren, H. Yang, Q. Xu, ACS Appl. Mater. Interfaces 6, 14644–14652 (2014)CrossRefGoogle Scholar
  2. 2.
    U.K. Sen, S. Mitra, ACS Appl. Mater. Interfaces 5, 1240–1247 (2013)CrossRefGoogle Scholar
  3. 3.
    S.K. Das, R. Mallavajula, N. Jayaprakash, L.A. Archer, J. Mater. Chem. 22, 12988–12992 (2012)CrossRefGoogle Scholar
  4. 4.
    Y. Lu, X. Yao, J. Yin, G. Peng, P. Cui, X. Xu, RSC Adv. 5, 7938–7943 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, L. Yu, X.W. Lou, Angew. Chem. Int. Ed. 55, 7423–7426 (2016)CrossRefGoogle Scholar
  6. 6.
    X. Zuo, K. Chang, J. Zhao, Z. Xie, H. Tang, B. Li, Z. Chang, J. Mater. Chem. A 4, 51–58 (2016)CrossRefGoogle Scholar
  7. 7.
    C. Zhu, X. Mu, P.A. van Aken, J. Maier, Y. Yu, Adv. Energy Mater. 5, 1401170–1401178 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, ACS Nano 9, 3837–3848 (2015)CrossRefGoogle Scholar
  9. 9.
    C. Zhu, X. Mu, P.A. van Aken, Y. Yu, J. Maier, Angew. Chem. 126, 2184–2188 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, P. Hu, L. Zhang, C. Li, Adv. Mater. 27, 3687–3695 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Guo, Q. Zhang, Z. Zhu, J. Xie, J. Fan, Q. Xu, P. Shi, Y. Min, Chem. Sel. 2, 3117–3128 (2017)Google Scholar
  12. 12.
    Z.-H. Miao, P.-P. Wang, Y.-C. Xiao, H.-T. Fang, L. Zhen, C.-Y. Xu, ACS Appl Mater Interfaces 8, 33741–33748 (2016)CrossRefGoogle Scholar
  13. 13.
    B. Hou, X. Wang, J. Yao, H. Zhang, W. Yu, G. Liu, X. Dong, L. Wang, J. Wang, J. Mater. Sci. 28, 12297–12305 (2017)Google Scholar
  14. 14.
    W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRefGoogle Scholar
  15. 15.
    M.S. Raghu, K.Y. Kumar, S. Rao, T. Aravinda, S.C. Sharma, M.K. Prashanth, Phys. B 537, 336–345 (2018)CrossRefGoogle Scholar
  16. 16.
    S.B. Patil, B. Kishore, M.K. Nagaraj, N. Ganganagappa, U. Velu, Chem. Sel. 3, 7490–7495 (2018)Google Scholar
  17. 17.
    S.B. Patil, T.N. Ravishankar, K. Lingaraju, G.K. Raghu, G. Nagaraju, J. Mater. Sci. 29, 277–287 (2018)Google Scholar
  18. 18.
    L. Wang, J. Li, H. Zhou, Z. Huang, B. Zhai, L. Liu, L. Hu, J. Mater. Sci. 29, 3110–3119 (2018)Google Scholar
  19. 19.
    S.K. Srivastava, B. Kartick, S. Choudhury, M. Stamm, Mater. Chem. Phys. 183, 383–391 (2016)CrossRefGoogle Scholar
  20. 20.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Phys. Chem. Solids 112, 106–118 (2018)CrossRefGoogle Scholar
  21. 21.
    V. Revathi, K. Karthik, J. Mater. Sci. 29, 18519–18530 (2018)Google Scholar
  22. 22.
    K.S.W. Sing, Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  23. 23.
    X. Hu, Y. Li, G. Zeng, J. Jia, H. Zhan, Z. Wen, ACS Nano 12, 1592–1602 (2018)CrossRefGoogle Scholar
  24. 24.
    N. Lingappan, D.J. Kang, Electrochim. Acta 193, 128–136 (2016)CrossRefGoogle Scholar
  25. 25.
    J.-G. Wang, R. Zhou, D. Jin, K. Xie, B. Wei, Electrochim. Acta 231, 396–402 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Xia, Y. Wang, Y. Liu, C. Wu, M. Wu, H. Zhang, Chem. Eng. J. 332, 431–439 (2018)CrossRefGoogle Scholar
  27. 27.
    Y. Zhong, Q. Zhuang, C. Mao, Z. Xu, Z. Guo, G. Li, J. Alloys Compd. 745, 8–15 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Choi, J. Hwang, H. Setiadi, W. Chang, J. Kim, J. Supercritical Fluids 127, 81–89 (2017)CrossRefGoogle Scholar
  29. 29.
    Z. Wang, S. Madhavi, X.W. Lou, J. Phys. Chem. C 116, 12508–12513 (2012)CrossRefGoogle Scholar
  30. 30.
    F. Xiong, Z. Cai, L. Qu, P. Zhang, Z. Yuan, O.K. Asare, W. Xu, C. Lin, L. Mai, ACS Appl. Mater. Interfaces 7, 12625–12630 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shivaraj B. Patil
    • 1
  • M. S. Raghu
    • 2
    • 3
  • Brij Kishore
    • 4
  • G. Nagaraju
    • 1
    Email author
  1. 1.Department of ChemistrySiddaganga Institute of Technology (Affiliated to Visvesvaraya Technological University, Belagavi)TumakuruIndia
  2. 2.Department of ChemistryNitte Meenakshi Institute of TechnologyBengaluruIndia
  3. 3.Department of ChemistryNew Horizon College of EngineeringBengaluruIndia
  4. 4.WMG, University of WarwickCoventryUK

Personalised recommendations