Skip to main content

Advertisement

Log in

Preparation of lamellar structure MoS2@rGO/S and its energy storage performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Aiming at the lithium polysulfides’ shuttle effect, elemental sulfur’s poor conductivity, and large volume changes in the lithium sulfur battery (LSB), the petal MoS2 (high adsorption to lithium polysulfides) and reduced graphene oxide (rGO, excellent conductivity, and structural stability) were introduced in the LSB. MoS2@rGO was prepared by growing MoS2 in situ on the surface of graphene oxide (GO). MoS2@rGO/S cathode material was prepared by thermally melting sulfur on MoS2@rGO. Morphological structure and electrochemical properties of the samples were characterized. The results show that the prepared MoS2 is a petal-like structure and grows in situ on the GO. The composite MoS2@rGO/S shows a lamellar structure and an excellent electrochemical performance: its first discharge specific capacity is up to 1243.3 mAh g−1 at 0.1 C. Even at 3 C, its discharge specific capacity is 732.0 mAh g−1. Its capacity decay rate for 200 cycles at 0.5 C is only 0.09%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carbone L, Coneglian T, Gobet M, Munoz S, Devany M, Greenbaum S, Hassoun J (2018) A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. J Power Sources 377:26–35

    Article  CAS  Google Scholar 

  2. Gueon D, Hwang JT, Yang SB, Cho E, Sohn K, Yang DK, Moon JH (2018) Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes. ACS Nano 12:226–233

    Article  CAS  PubMed  Google Scholar 

  3. Beltran SP, Balbuena PB (2018) Formation of multilayer graphene domains with strong sulfur-carbon interaction and enhanced sulfur reduction zones for lithium-sulfur battery cathodes. Chemsuschem 11:1970–1980

    Article  CAS  Google Scholar 

  4. Du HP, Li SZ, Qu HT, Lu BY, Wang XG, Chai JC, Zhang HR, Ma J, Zhang ZH, Cui GL (2018) Stable cycling of lithium-sulfur battery enabled by a reliable gel polymer electrolyte rich in ester groups. J Membrane Sci 550:399–406

    Article  CAS  Google Scholar 

  5. Wu W, Yi YK, Wang T, Gao TN, Huo QS, Song SY, Li MT, Qiao ZA (2019) Coordination-self-assembly approach toward aggregation-free metal nanoparticles in ordered mesoporous carbons. ChemElectroChem 6:724–730

    Article  CAS  Google Scholar 

  6. Wang J, Meng Z, Yang W, Yan X, Guo R (2019) Facile synthesis of rGO/g-C3N4/CNT microspheres via an ethanol-assisted spray-drying method for high-performance lithium-sulfur batteries. ACS App Mater Inter 11:819–827

    Article  CAS  Google Scholar 

  7. Tian C, Wu J, Ma Z, Li B, Xiang X (2019) Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium-sulfur battery performance. Beilstein J Nanotechnol 10:2251–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu XF, Tian DX, Li WC, He B, Zhang Y, Chen ZY, Lu AH (2019) One-pot synthesis of highly conductive nickel-rich phosphide/CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery. Nano Res 12:1193–1197

    Article  CAS  Google Scholar 

  9. Chen MF, Lu Q, Jiang SX, Huang C, Wang XY, Wu B, Xiang KX, Wu YT (2018) MnO2 nanosheets grown on the internal/external surface of N-doped hollow porous carbon nanospheres as the sulfur host of advanced lithium-sulfur batteries. Chem Eng J 335:831–842

    Article  CAS  Google Scholar 

  10. Sun Y, Zhao YN, Cui YX, Zhang J, Zhang GF, Luo WH, Zheng WJ (2017) A facile synthesis of mesoporous TiO2 sub-microsphere host for long life lithium-sulfur battery cathodes. Electrochim Acta 239:56–64

    Article  CAS  Google Scholar 

  11. Luo L, Chung SH, Manthiram A (2018) A three-dimensional self-assembled SnS2-nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium-sulfur batteries. J Mater Chem A 6:7659–7667

    Article  CAS  Google Scholar 

  12. Li F, Hu GQ, Li SJ, Hou CH, Gao J (2020) Dual-confined sulfur cathodes based on SnO2-decorated MoS2 microboxes for long-life lithium-sulfur batteries. Electrochim Acta 340:135991

    Article  CAS  Google Scholar 

  13. Wen XY, Xiang KX, Zhu YR, Xiao L, Chen XH, Chen H (2018) Preparation of Mn3O4-CNTs microspheres as an improved sulfur hosts for lithium-sulfur batteries. Mater Lett 229:272–276

    Article  CAS  Google Scholar 

  14. Lei TY, Chen W, Huang JW, Yan CY, Sun HX, Wang C, Zhang WL, Li YR, Xiong J (2017) Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries. Adv Energy Mater 7:1601843

    Article  CAS  Google Scholar 

  15. Chen B, Meng YH, He F, Liu EZ, Shi CS, He CN, Ma LY, Li QY, Li JJ, Zhao NQ (2017) Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries. Nano Energy 41:154–163

    Article  CAS  Google Scholar 

  16. Jeong YC, Kim JH, Kwon SH, Oh JY, Park J, Jung Y, Lee SG, Yang SJ, Park CR (2017) Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium sulfur batteries. J Mater Chem A 5:23909–23918

    Article  CAS  Google Scholar 

  17. Zhang R, Dong YT, Al-Tahan MA, Zhang YY, Wei RP, Ma YH, Yang CC, Zhang JM (2021) Insights into the sandwich-like ultrathin Ni-doped MoS2/rGO hybrid as effective sulfur hosts with excellent adsorption and electrocatalysis effects for lithium-sulfur batteries. J Energy Chem 60:85–94

    Article  Google Scholar 

  18. Ghazi ZA, He X, Khattak AM, Khan NA, Liang B, Iqbal A, Wang JX, Sin HS, Li LS, Tang ZY (2017) MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv Mater 29:1606817

    Article  CAS  Google Scholar 

  19. Cheng SP, Xia XH, Liu HB, Chen YX (2018) Core-shell structured MoS2@S spherical cathode with improved electrochemical performance for lithium-sulfur batteries. J Mater Sci Technol 34:1912–1918

    Article  CAS  Google Scholar 

  20. Liu QQ, Jiang Q, Jiang L, Peng JQ, Gao YK, Duan ZH, Lu XY (2018) Preparation of SnO2@rGO/CNTs/S composite and application for lithium-sulfur battery cathode material. App Surf Sci 462:393–398

    Article  CAS  Google Scholar 

  21. Tan L, Li XH, Wang ZX, Guo HJ, Wang JX (2018) Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium-sulfur batteries. ACS App Mater Inter 10:3707–3713

    Article  CAS  Google Scholar 

  22. Li XL, Zhao K, Zhang LY, Ding ZQ, Hu K (2017) MoS2-decorated coaxial nanocable carbon aerogel composites as cathode materials for high performance lithium-sulfur batteries. J Alloy Compd 692:40–48

    Article  CAS  Google Scholar 

  23. Ren JS, Wang CX, Zhang X, Carey T, Chen KL, Yin YJ, Torrisi F (2017) Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 111:622–630

    Article  CAS  Google Scholar 

  24. Chang K, Hai X, Pang H, Zhang HB, Shi L, Liu GG, Liu HM, Zhao GX, Li M, Ye JH (2016) Targeted synthesis of 2H-and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv Mater 28:10033–10041

    Article  CAS  PubMed  Google Scholar 

  25. Li F, Zhang L, Li J, Lin XQ, Li XZ, Fang YY, Huang JW, Li WZ, Tian M, Jin J, Li R (2015) Synthesis of Cu-MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Power Sources 292:15–22

    Article  CAS  Google Scholar 

  26. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4:2695–2700

    Article  CAS  PubMed  Google Scholar 

  27. Song P, Qiu H, Wang L, Liu XY, Zhang YL, Zhang JL, Kong J, Gu JW (2020) Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain Mater Techno 24:e00153

    CAS  Google Scholar 

  28. Huang LS, Lu JZ, Ma DW, Ma CM, Zhang B, Wang HY, Wang GY, Gregory DH, Zhou XY, Han G (2020) Facile in situ solution synthesis of SnSe/rGO nanocomposites with enhanced thermoelectric performance. J Mater Chem A 8:1394–1402

    Article  CAS  Google Scholar 

  29. Ravikovitch PI, Vishnyakov A, Russo R, Neimark AV (2000) Unified approach to pore size characterization of microporous carbonaceous materials from N-2, Ar, and CO2 adsorption isotherms. Langmuir 16:2311–2320

    Article  CAS  Google Scholar 

  30. Tang C, Li BQ, Zhang Q, Zhu L, Wang HF, Shi JL, Wei F (2016) CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv Funct Mater 26:577–585

    Article  CAS  Google Scholar 

  31. Singh G, Lakhi KS, Ramadass K, Sathish CI, Vinu A (2019) High-performance biomass-derived activated porous biocarbons for combined pre-and post-combustion CO2 capture. ACS Sustain Chem Eng 7:7412–7420

    Article  CAS  Google Scholar 

  32. Evers S, Nazar LF (2013) New approaches for high energy density lithium-sulfur battery cathodes. Accounts Chem Res 46:1135–1143

    Article  CAS  Google Scholar 

  33. Li XL, Chu LB, Wang YY, Pan LS (2016) Anchoring function for polysulfide ions of ultrasmall SnS2 in hollow carbon nanospheres for high performance lithium-sulfur batteries. Mat Sci Eng B-Adv 205:46–54

    Article  CAS  Google Scholar 

  34. Wu NT, Wu H, Yuan W, Liu SJ, Liao JY, Zhang Y (2015) Facile synthesis of one-dimensional LiNi0.8Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries. J Mater Chem A 3:13648–13652

    Article  CAS  Google Scholar 

  35. Li Y, Bai Y, Wu C, Qian J, Chen GH, Liu L, Wang H, Zhou XZ, Wu F (2016) Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. J Mater Chem A 4:5942–5951

    Article  CAS  Google Scholar 

  36. Chen RG, Shen J, Chen K, Tang M, Zeng T (2021) Metallic phase MoS2 nanosheet decorated biomass carbon as sulfur hosts for advanced lithium-sulfur batteries. Appl Surf Sci 566:150651

    Article  CAS  Google Scholar 

  37. Tian CX, Wu JW, Ma Z, Li B, Li PC, Zu XT, Xiang X (2019) Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium-sulfur battery performance. Beilstein J Nanotech 10:2251–2260

    Article  CAS  Google Scholar 

  38. Guo WM, Zhu QL, Lu QH (2020) MCNT/MoS2 promoting the electrochemical performance of lithium-sulfur batteries by adsorption polysulfide. Materials Mater Res Express 7:035507

    Article  CAS  Google Scholar 

  39. Hou YZ, Ren YB, Zhang SC, Wang KP, Yu FS, Zhu T (2021) 3D S@MoS2@reduced graphene oxide aerogels cathode for high-rate lithium-sulfur batteries. J Alloy Compd 852:157011

    Article  CAS  Google Scholar 

  40. You Y, Ye YW, Wei ML, Sun WJ, Tang Q, Zhang J, Chen X, Li HQ, Xu J (2019) Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem Eng J 355:671–678

    Article  CAS  Google Scholar 

  41. Li ZT, Deng SZ, Xu RF, Wei LQ, Su X, Wu MB (2017) Combination of Nitrogen-doped graphene with MoS2 nanoclusters for improved Li-S battery cathode: synthetic effect between 2D components. Electrochim Acta 252:200–207

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (51602266), Sichuan Province Key R&D Project (2021YFG0216), Sichuan Provincial Central Leading Local Science and Technology Development Project (2021ZYD0066), Chengdu Technology Innovation R&D Project (2022-YF05-00320-SN), and Fundamental Research Funds for the Central Universities (2682020ZT83).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Xiaoying or Jiang Qi.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Weitong, Y., Lijun, S. et al. Preparation of lamellar structure MoS2@rGO/S and its energy storage performance. Ionics 28, 4217–4227 (2022). https://doi.org/10.1007/s11581-022-04681-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04681-6

Keywords

Navigation