Skip to main content
Log in

Structural, surface area and FTIR characterization of Zn0.95−xCu0.05 Fe0.0xO nanocomposites prepared via sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herewith, we report the successful preparation of Zn0.95−xCu0.05Fe0.0xO mesoporous composites using sol–gel method and their characterization using different techniques. Increasing the ratio of iron in the composites has considerably led to particles size reduction (22–18 nm) along with the increase in surface area (7–63 m2g−1) as respectively evidenced from the XRD and N2 adsorption analysis. The effect of Fe doping on the Zn0.95Cu0.05O brought about an increment in micro-strain from 5.03 × 10−3 to 6.33 × 10−3 and a reduction in stress in accordance with the particle size minimization. The morphology of the nanocomposite exhibited a semispherical appearance that got distorted with the loading of more Fe. In addition, the great surface area observed indicates a high grain boundary surfaces. The formation and purity of the nanocomposite was confirmed by the shift in the Zn–O wavenumber as shown in the FTIR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Sangeetha, S. Muthukumaran, M. Ashokkumar, Structural, optical, dielectric and antibacterial studies of Mn doped Zn 0.96 Cu 0.04 O nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 144, 1–7 (2015)

    Article  Google Scholar 

  2. M. Ashokkumar, S. Muthukumaran, Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Opt. Mater. 37, 671–678 (2014)

    Article  Google Scholar 

  3. M. Sima et al., ZnO: Mn: Cu nanowires prepared by template method. Phys. Status Solidi (B) 244(5), 1522–1527 (2007)

    Article  Google Scholar 

  4. X.L. Wang et al., Effect of the magnetic order on the room-temperature band-gap of Mn-doped ZnO thin films. Appl. Phys. Lett. 102(10), 102112 (2013)

    Article  Google Scholar 

  5. M. Chakraborty, A. Ghosh, R. Thangavel, Experimental and theoretical investigations of structural and optical properties of copper doped ZnO nanorods. J. Sol-Gel. Sci. Technol. 74(3), 756–764 (2015)

    Article  Google Scholar 

  6. Z.B. Bahşi, A.Y. Oral, Effects of Mn and Cu doping on the microstructures and optical properties of sol–gel derived ZnO thin films. Opt. Mater. 29(6), 672–678 (2007)

    Article  Google Scholar 

  7. K. Mageshwari et al., Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method. J. Alloys Compd. 625, 362–370 (2015)

    Article  Google Scholar 

  8. A. Modwi et al., Fast and high efficiency adsorption of Pb (II) ions by Cu/ZnO composite. Mater. Lett. 195, 41–44 (2017)

    Article  Google Scholar 

  9. P.K. Sharma, R.K. Dutta, A.C. Pandey, Effect of nickel doping concentration on structural and magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles. J. Magn. Magn. Mater. 321(20), 3457–3461 (2009)

    Article  Google Scholar 

  10. Z. Zhu et al., Construction of high-dispersed Ag/Fe3O4/gC3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl. Catal. B 182, 115–122 (2016)

    Article  Google Scholar 

  11. R. Saravanan et al., Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater. Sci. Eng. 33(1), 91–98 (2013)

    Article  Google Scholar 

  12. A. Taufik, R. Saleh, Synergistic effect between ternary iron–zinc–copper mixed oxides and graphene for photocatalytic water decontamination. Ceram. Int. 43(4), 3510–3520 (2017)

    Article  Google Scholar 

  13. O. Slimi et al., Structural and optical properties of Cu doped ZnO aerogels synthesized in supercritical ethanol. J. Porous. Mater. 1–7 (2017)

  14. V. Sarath Chandra et al., Blood compatibility of iron-doped nanosize hydroxyapatite and its drug release. ACS Appl. Mater. & Interfaces 4(3), 1200–1210 (2012)

    Article  Google Scholar 

  15. J.R. Ramya et al., Physicochemical and biological properties of iron and zinc ions co-doped nanocrystalline hydroxyapatite, synthesized by ultrasonication. Ceram. Int. 40(10), 16707–16717 (2014)

    Article  Google Scholar 

  16. M.H. Habibi et al., Preparation of nanostructure mixed copper-zinc oxide via co-precipitation rout for dye-sensitized solar cells: the influence of blocking layer and Co (II)/Co (III) complex redox shuttle. J. Ind. Eng. Chem. 20(4), 1462–1467 (2014)

    Article  Google Scholar 

  17. P. Bandyopadhyay et al., Synthesis and characterization of copper doped zinc oxide nanoparticles and its application in energy conversion. Curr. Appl Phys. 14(8), 1149–1155 (2014)

    Article  Google Scholar 

  18. S.P. Meshram et al., Cu doped ZnO microballs as effective sunlight driven photocatalyst. Ceram. Int. 42(6), 7482–7489 (2016)

    Article  Google Scholar 

  19. M.d..l..A. Cangiano, M.W. Ojeda, Effect of pH value and calcination temperature on synthesis and characteristics of Cu–Ni nano-alloys. Trans. Nonferr. Metals Soc. China 25(11), 3664–3677 (2015)

    Article  Google Scholar 

  20. J. Hu et al., Synthesis of uniform hexagonal prismatic ZnO whiskers. Chem. Mater. 14(3), 1216–1219 (2002)

    Article  Google Scholar 

  21. A. Zhang et al., Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO 4 photocatalyst. J. Mol. Catal. A 304(1), 28–32 (2009)

    Article  Google Scholar 

  22. X. Wang et al., Influences of heat-treatment on the microstructure and properties of silica–titania composite aerogels. J. Porous. Mater. 21(3), 293–301 (2014)

    Article  Google Scholar 

  23. A. Modwi et al., Effect of annealing on physicochemical and photocatalytic activity of Cu5% loading on ZnO synthesized by sol–gel method. J. Mater. Sci. 27(12), 12974–12984 (2016)

    Google Scholar 

  24. Z. Zhang et al., Cu-doped ZnO nanoneedles and nanonails: morphological evolution and physical properties. J. Phys. Chem. C 112(26), 9579–9585 (2008)

    Article  Google Scholar 

  25. A. Taufik, R. Saleh, Synthesis of iron (II, III) oxide/zinc oxide/copper (II) oxide (Fe 3 O 4/ZnO/CuO) nanocomposites and their photosonocatalytic property for organic dye removal. J. Colloid Interface Sci. 491, 27–36 (2017)

    Article  Google Scholar 

  26. Z. Quan et al., Microstructures, surface bonding states and room temperature ferromagnetisms of Zn 0.95 Co 0.05 O thin films doped with copper. Appl. Surf. Sci. 256(11), 3669–3675 (2010)

    Article  Google Scholar 

  27. C. Wang et al., Structure, morphology and properties of Fe-doped ZnO films prepared by facing-target magnetron sputtering system. Appl. Surf. Sci. 255(15), 6881–6887 (2009)

    Article  Google Scholar 

  28. S. Kumar et al., Insight into the origin of ferromagnetism in Fe-doped ZnO diluted magnetic semiconductor nanocrystals: an EXFAS study of local structure. RSC Adv. 5(115), 94658–94669 (2015)

    Article  Google Scholar 

  29. A.K. Yadav et al., Investigation of Fe doped ZnO thin films by X-ray absorption spectroscopy. RSC Adv. 6(78), 74982–74990 (2016)

    Article  Google Scholar 

  30. S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34(11), 1946–1953 (2012)

    Article  Google Scholar 

  31. M. Ashokkumar, S. Muthukumaran, Zn0.96–xCu0.04 FexO (0⩽ x⩽ 0.04) alloys–Optical and structural studies. Superlatt. Microstruct. 69, 53–64 (2014)

    Article  Google Scholar 

  32. K. Taha, M. M’hamed, H. Idriss, Mechanical fabrication and characterization of zinc oxide (ZnO) nanoparticles. J. Ovon. Res. Vol. 11(6), 271–276 (2015)

    Google Scholar 

  33. G. Srinivasan, R.R. Kumar, J. Kumar, Li doped and undoped ZnO nanocrystalline thin films: a comparative study of structural and optical properties. J. Sol-Gel Sci. Technol. 43(2), 171–177 (2007)

    Article  Google Scholar 

  34. O. Lupan et al., Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256(6), 1895–1907 (2010)

    Article  Google Scholar 

  35. G. Zatryb et al., Stress transition from compressive to tensile for silicon nanocrystals embedded in amorphous silica matrix. Thin Solid Films 571, 18–22 (2014)

    Article  Google Scholar 

  36. J.B. Condon, Surface area and porosity determinations by physisorption: measurements and theory. (Elsevier, Amsterdam, 2006)

    Google Scholar 

  37. G. Xiong et al., Synthesis of mesoporous ZnO (m-ZnO) and catalytic performance of the Pd/m-ZnO catalyst for methanol steam reforming. Energy Fuels 23(3), 1342–1346 (2009)

    Article  Google Scholar 

  38. M. Arshad et al., Effect of Co substitution on the structural and optical properties of ZnO nanoparticles synthesized by sol–gel route. J. Alloys Compd. 509(33), 8378–8381 (2011)

    Article  Google Scholar 

  39. N.H. Hashim et al., Structural and surface characterization of undoped ZnO and Cu doped ZnO using sol–gel spin coating method. J. Mater. Sci. 27(4), 3520–3530 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Khezami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modwi, A., Khezami, L., Taha, K.K. et al. Structural, surface area and FTIR characterization of Zn0.95−xCu0.05 Fe0.0xO nanocomposites prepared via sol–gel method. J Mater Sci: Mater Electron 29, 2184–2192 (2018). https://doi.org/10.1007/s10854-017-8131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8131-8

Navigation