Skip to main content
Log in

Polypyrrole nanotube/ferrocene-modified graphene oxide composites: From fabrication to EMI shielding application

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polypyrrole nanotube/ferrocene-modified graphene oxide composites (PNT/GO-Fc, PNT/GO-Fc-GO, PNT/GO-EDA-Fc and PNT/GO-EDA-Fc-EDA-GO) were fabricated via in situ chemical oxidative polymerization. The prepared composites were characterized by FTIR, XRD, XPS, Raman, TGA, SEM, TEM and EDS. The electromagnetic interference shielding performance of the prepared composites was evaluated by a coaxial method within the frequency range of 1.0–4.5 GHz. The results demonstrated that the composite of PNT/GO-EDA-Fc-EDA-GO-7:1 exhibited the best electromagnetic interference shielding property with 28.73 dB (at the frequency of 1.0175 GHz with the thickness of 3.0 mm) of total shielding effectiveness by adding 50 wt% of the composite in the paraffin matrix. And the composite of PNT/GO-EDA-Fc-EDA-GO-7:1 exhibited good conductivity with a value of 1.320 S/cm. The relationship between the conductivities of prepared samples and the EMI shielding performance was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Zhang Y, Huang Y, Zhang T, Chang H, Xiao P, Chen H, Huang Z, Chen Y (2015) Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater 27(12):2049–2053. https://doi.org/10.1002/adma.201405788

    Article  CAS  Google Scholar 

  2. Wang L, Huang Y, Sun X, Huang H, Liu P, Zong M, Wang Y (2014) Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6(6):3157–3164. https://doi.org/10.1039/c3nr05313j

    Article  CAS  Google Scholar 

  3. Namai A, Sakurai S, Nakajima M, Suemoto T, Matsumoto K, Goto M, Sasaki S, Ohkoshi S-i (2009) Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J Am Chem Soc 131(3):1170–1173. https://doi.org/10.1021/ja807943v

    Article  CAS  Google Scholar 

  4. Huang L, Chen C, Li Z, Zhang Y, Zhang H, Lu J, Ruan S, Zeng Y-J (2020) Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. Nanotechnology 31(16):162001. https://doi.org/10.1088/1361-6528/ab50af

    Article  CAS  Google Scholar 

  5. Yin XW, Kong L, Zhang LT, Cheng LF, Travitzky N, Greil P (2014) Electromagnetic properties of Si-C-N based ceramics and composites. Int Mater Rev 59(6):326–355. https://doi.org/10.1179/1743280414y.0000000037

    Article  CAS  Google Scholar 

  6. Li F, Zhan W, Su Y, Siyal SH, Bai G, Xiao W, Zhou A, Sui G, Yang X (2020) Achieving excellent electromagnetic wave absorption of ZnFe2O4@CNT/polyvinylidene fluoride flexible composite membranes by adjusting processing conditions. Compos Part A-Appl Sci Manuf 133:105866. https://doi.org/10.1016/j.compositesa.2020.105866

    Article  CAS  Google Scholar 

  7. Lin T, Yu H, Wang L, Fahad S, Khan A, K-u-R N, Haq F, Nazir A, Amin BU (2021) A review of recent advances in the preparation of polyaniline-based composites and their electromagnetic absorption properties. J Mater Sci 56(9):5449–5478. https://doi.org/10.1007/s10853-020-05631-1

    Article  CAS  Google Scholar 

  8. Liu Y, Yin P, Chen J, Cui B, Zhang C, Wu F (2020) Conducting polymer-based composite materials for therapeutic implantations: from advanced drug delivery system to minimally invasive electronics. Int J Polymer Sci 2020:5659682. https://doi.org/10.1155/2020/5659682

    Article  Google Scholar 

  9. Tiwari SK, Mishra J, Hatui G, Nayak GC (2017) Conductive polymer composites based on carbon nanomaterials. Conducting Polymer Hybrids. https://doi.org/10.1007/978-3-319-46458-9_4

    Article  Google Scholar 

  10. Liu JY, Wang JJ, Yu XH, Li L, Shang SM (2015) One-pot synthesis of polypyrrole/AgCl composite nanotubes and their antibacterial properties. Micro & Nano Letters 10(1):50–53. https://doi.org/10.1049/mnl.2014.0435

    Article  Google Scholar 

  11. Qian X, Chen J, An X (2010) Polypyrrole-coated conductive paper prepared by vapour-phase deposition method. Appita J 63(2):102–107

    CAS  Google Scholar 

  12. Park K-S, Schougaard SB, Goodenough JB (2007) Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Adv Mater 19(6):848–851. https://doi.org/10.1002/adma.200600369

    Article  CAS  Google Scholar 

  13. Chen Z, Yu D, Xiong W, Liu P, Liu Y, Dai L (2014) Graphene-based nanowire supercapacitors. Langmuir 30(12):3567–3571. https://doi.org/10.1021/la500299s

    Article  CAS  Google Scholar 

  14. Li M, Li H, Zhong W, Zhao Q, Wang D (2014) Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl Mater Interfaces 6(2):1313–1319. https://doi.org/10.1021/am4053305

    Article  CAS  Google Scholar 

  15. Nautiyal A, Qiao M, Cook JE, Zhang X, Huang T-S (2018) High performance polypyrrole coating for corrosion protection and biocidal applications. Appl Surf Sci 427:922–930. https://doi.org/10.1016/j.apsusc.2017.08.093

    Article  CAS  Google Scholar 

  16. Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z (2015) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv Mater 27(6):1117–1123. https://doi.org/10.1002/adma.201404622

    Article  CAS  Google Scholar 

  17. Tian C, Du Y, Xu P, Qiang R, Wang Y, Ding D, Xue J, Ma J, Zhao H, Han X (2015) Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces 7(36):20090–20099. https://doi.org/10.1021/acsami.5b05259

    Article  CAS  Google Scholar 

  18. Zhan Y, Zhao R, Xiang X, He S, Zhao S, Xue W (2019) Hierarchical core/shell bamboo-like polypyrrole nanofibers/Fe3O4 hybrids with superior microwave absorption performance. Compos Interfaces 26(12):1087–1100. https://doi.org/10.1080/09276440.2019.1586043

    Article  CAS  Google Scholar 

  19. Liu XY, Yang JX, Li XY, Li Q, Xia YJ (2020) Fabrication of polypyrrole (PPy) nanotube electrode for supercapacitors with enhanced electrochemical performance. J Mater Sci-Mater Electron 31(1):581–586. https://doi.org/10.1007/s10854-019-02562-9

    Article  CAS  Google Scholar 

  20. Babayan V, Kazantseva NE, Moucka R, Stejskal J (2017) Electromagnetic shielding of polypyrrole-sawdust composites: polypyrrole globules and nanotubes. Cellulose 24(8):3445–3451. https://doi.org/10.1007/s10570-017-1357-z

    Article  CAS  Google Scholar 

  21. Zhao J, Lin JP, Xiao JP, Fan HL (2015) Synthesis and electromagnetic, microwave absorbing properties of polyaniline/graphene oxide/Fe3O4 nanocomposites. RSC Adv 5(25):19345–19352. https://doi.org/10.1039/c4ra12186d

    Article  CAS  Google Scholar 

  22. Chen XN, Chen JJ, Meng FB, Shan LM, Jiang M, Xu XL, Lu J, Wang Y, Zhou ZW (2016) Hierarchical composites of polypyrrole/graphene oxide synthesized by in situ intercalation polymerization for high efficiency and broadband responses of electromagnetic absorption. Compos Sci Technol 127:71–78. https://doi.org/10.1016/j.compscitech.2016.02.033

    Article  CAS  Google Scholar 

  23. Bertolini MC, Ramoa S, Merlini C, Barra GMO, Soares BG, Pegoretti A (2020) Hybrid composites based on thermoplastic polyurethane with a mixture of carbon nanotubes and carbon black modified with polypyrrole for electromagnetic shielding. Front Mater 7:174. https://doi.org/10.3389/fmats.2020.00174

    Article  Google Scholar 

  24. Wang Y-Y, Sun W-J, Lin H, Gao P-P, Gao J-F, Dai K, Yan D-X, Li Z-M (2020) Steric stabilizer-based promotion of uniform polyaniline shell for enhanced electromagnetic wave absorption of carbon nanotube/polyaniline hybrids. Composites Part B-Eng 7:199. https://doi.org/10.1016/j.compositesb.2020.108309

    Article  CAS  Google Scholar 

  25. Feng D, Xu D, Wang Q, Liu P (2019) Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering. J Mater Chem C 7(26):7938–7946. https://doi.org/10.1039/c9tc02311a

    Article  CAS  Google Scholar 

  26. Feng D, Liu PJ, Wang Q (2020) Carbon nanotubes in microwave-assisted foaming and sinter molding of high performance polyetherimide bead foam products. Mater Sci Eng B-Adv Functional Solid-State Mater 262:10. https://doi.org/10.1016/j.mseb.2020.114727

    Article  CAS  Google Scholar 

  27. Hu T, Mei X, Wang Y, Weng X, Liang R, Wei M (2019) Two-dimensional nanomaterials: fascinating materials in biomedical field. Sci Bull 64(22):1707–1727. https://doi.org/10.1016/j.scib.2019.09.021

    Article  CAS  Google Scholar 

  28. Cui R-B, Zhang C, Zhang J-Y, Xue W, Hou Z-L (2020) Highly dispersive GO-based supramolecular absorber: chemical-reduction optimization for impedance matching. J Alloy Compd 834:155122. https://doi.org/10.1016/j.jallcom.2020.155122

    Article  CAS  Google Scholar 

  29. Teimuri-Mofrad R, Abbasi H, Hadi R (2019) Graphene oxide-grafted ferrocene moiety via ring opening polymerization (ROP) as a supercapacitor electrode material. Polymer 167:138–145. https://doi.org/10.1016/j.polymer.2019.01.084

    Article  CAS  Google Scholar 

  30. Yang X, Niu X, Mo Z, Liu N, Guo R, Zhao P, Liu Z, Ouyang M (2019) The synthesis of chitosan decorated reduced graphene oxide-ferrocene nanocomposite and its application in electrochemical detection Rhodamine B. Electroanalysis 31(8):1438–1445. https://doi.org/10.1002/elan.201800880

    Article  CAS  Google Scholar 

  31. Qiu JD, Deng MQ, Liang RP, Xiong M (2008) Ferrocene-modified multiwalled carbon nanotubes as building block for construction of reagentless enzyme-based biosensors. Sens Actuators B-Chem 135(1):181–187. https://doi.org/10.1016/j.snb.2008.08.017

    Article  CAS  Google Scholar 

  32. Karthick NA, Thangappan R, Arivanandhan M, Gnanamani A, Jayavel R (2018) A facile synthesis of ferrocene functionalized graphene oxide nanocomposite for electrochemical sensing of lead. J Inorg Organomet Polym Mater 28(3):1021–1028. https://doi.org/10.1007/s10904-017-0744-0

    Article  CAS  Google Scholar 

  33. Gao Y, Hu G, Zhang W, Ma D, Bao X (2011) pi-pi Interaction intercalation of layered carbon materials with metallocene. Dalton Trans 40(17):4542–4547. https://doi.org/10.1039/c0dt01392g

    Article  CAS  Google Scholar 

  34. Rabti A, Mayorga-Martinez CC, Baptista-Pires L, Raouafi N, Merkoci A (2016) Ferrocene-functionalized graphene electrode for biosensing applications. Anal Chim Acta 926:28–35. https://doi.org/10.1016/j.aca.2016.04.010

    Article  CAS  Google Scholar 

  35. Jin C, Lee J, Lee E, Hwang E, Lee H (2012) Nonvolatile resistive memory of ferrocene covalently bonded to reduced graphene oxide. Chem Commun 48(35):4235–4237. https://doi.org/10.1039/c2cc30973d

    Article  CAS  Google Scholar 

  36. Zhou LW L, Yu HJ, Gao JM, Ding WB, Gao HQ (2013) Ferrocene covalently functionalized graphene oxide: Preparation, characterization and catalytic performance for thermal decomposition of ammonium perchlorate. J Mater Sci Eng 31(3):323–330

    Google Scholar 

  37. Saleem M, Wang L, Yu HJ, Zain-ul A, Akram M, Ullah RS (2017) Synthesis of amphiphilic block copolymers containing ferrocene-boronic acid and their micellization, redox-responsive properties and glucose sensing. Colloid Polymer Sci 295(6):995–1006. https://doi.org/10.1007/s00396-017-4049-1

    Article  CAS  Google Scholar 

  38. Yang H, Shan C, Li F, Han D, Zhang Q, Niu L (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun 26:3880–3882. https://doi.org/10.1039/b905085j

    Article  CAS  Google Scholar 

  39. Saleem M, Yu H, Wang L, Zain-ul A, Khalid H, Akram M, Abbasi NM, Chen Y (2016) Study on synthesis of ferrocene-based boronic acid derivatives and their saccharides sensing properties. J Electroanal Chem 763:71–78. https://doi.org/10.1016/j.jelechem.2015.12.028

    Article  CAS  Google Scholar 

  40. Yang R-B, Reddy PM, Chang C-J, Chen P-A, Chen J-K, Chang C-C (2016) Synthesis and characterization of Fe3O4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties: role of carbon nanotube and polypyrrole content. Chem Eng J 285:497–507. https://doi.org/10.1016/j.cej.2015.10.031

    Article  CAS  Google Scholar 

  41. Guan LH, Shi ZJ, Li MX, Gu ZN (2005) Ferrocene-filled single-walled carbon nanotubes. Carbon 43(13):2780–2785. https://doi.org/10.1016/j.carbon.2005.05.025

    Article  CAS  Google Scholar 

  42. Amer WA, Wang L, Amin AM, Yu HJ, Li C, Ma L (2013) Study on the electrochemical, thermal, and liquid crystalline properties of poly(diethyleneglycol 1,1 ’-ferrocene dicarboxylate). Des Monomers Polym 16(2):160–169. https://doi.org/10.1080/15685551.2012.705504

    Article  CAS  Google Scholar 

  43. Sangeetha V, Kanagathara N, Sumathi R, Sivakumar N, Anbalagan G (2013) Spectral and thermal degradation of melamine cyanurate. J Mater 2013:1–7

    Article  Google Scholar 

  44. Larkin PJ, Makowski MP, Colthup NB, Flood LA (1998) Vibrational analysis of some important group frequencies of melamine derivatives containing methoxymethyl, and carbamate substituents: mechanical coupling of substituent vibrations with triazine ring modes. Vib Spectrosc 17(1):53–72. https://doi.org/10.1016/s0924-2031(98)00015-0

    Article  CAS  Google Scholar 

  45. Jing HY, Ren SZ, Shi YT, Song XD, Yang Y, Guo YN, An YL, Hao C (2017) Ozonization, amination and photoreduction of graphene oxide for triiodide reduction reaction: an experimental and theoretical study. Electrochim Acta 226:10–17. https://doi.org/10.1016/j.electacta.2016.12.190

    Article  CAS  Google Scholar 

  46. Wu L, Lu X, Dhanjai W-S, Dong Y, Wang X, Zheng S, Chen J (2018) 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens Bioelectron 107:69–75. https://doi.org/10.1016/j.bios.2018.02.021

    Article  CAS  Google Scholar 

  47. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49. https://doi.org/10.1016/j.carbon.2012.10.013

    Article  CAS  Google Scholar 

  48. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  49. Cao N, Zhang Y (2015) Study of reduced graphene oxide preparation by Hummers’ method and related characterization. J Nanomater 2015:168125. https://doi.org/10.1155/2015/168125

    Article  Google Scholar 

  50. Shen JF, Hu YZ, Shi M, Lu X, Qin C, Li C, Ye MX (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21(15):3514–3520. https://doi.org/10.1021/cm901247t

    Article  CAS  Google Scholar 

  51. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  52. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41. https://doi.org/10.1021/nl071822y

    Article  CAS  Google Scholar 

  53. Li YT, Lian HQ, Hu YN, Chang W, Cui XG, Liu Y (2016) Enhancement in mechanical and shape memory properties for liquid crystalline polyurethane strengthened by graphene oxide. Polymers 8(7):236. https://doi.org/10.3390/polym8070236

    Article  CAS  Google Scholar 

  54. Avinash MB, Subrahmanyam KS, Sundarayya Y, Govindaraju T (2010) Covalent modification and exfoliation of graphene oxide using ferrocene. Nanoscale 2(9):1762–1766. https://doi.org/10.1039/c0nr00024h

    Article  CAS  Google Scholar 

  55. Lu YZ, Jiang YY, Wu HB, Chen W (2015) Ferrocene-functionalized graphene oxide nanosheets: efficient electronic communication between ferrocene centers across graphene nanosheets. Electrochim Acta 156:267–273. https://doi.org/10.1016/j.electacta.2015.01.049

    Article  CAS  Google Scholar 

  56. Kosowska K, Domalik-Pyzik P, Sekula-Stryjewska M, Noga S, Jagiello J, Baran M, Lipinska L, Zuba-Surma E, Chlopek J (2020) Gradient chitosan hydrogels modified with graphene derivatives and hydroxyapatite: physiochemical properties and initial cytocompatibility evaluation. Int J Mol Sci 21(14):4888. https://doi.org/10.3390/ijms21144888

    Article  CAS  Google Scholar 

  57. Al-Gaashani R, Najjar A, Zakaria Y, Mansour S, Atieh MA (2019) XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram Int 45(11):14439–14448. https://doi.org/10.1016/j.ceramint.2019.04.165

    Article  CAS  Google Scholar 

  58. Yamada Y, Kim J, Matsuo S, Sato S (2014) Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon 70:59–74. https://doi.org/10.1016/j.carbon.2013.12.061

    Article  CAS  Google Scholar 

  59. Li B, Wu WB, Zhang TY, Jiang S, Chen XW, Zhang GH, Zhang X (2017) Ferrocene particles incorporated into Zr-based metal-organic frameworks for selective phenol hydroxylation to dihydroxybenzenes. RSC Adv 7(61):38691–38698. https://doi.org/10.1039/c7ra06917k

    Article  CAS  Google Scholar 

  60. Wu J, Dai Y, Pan Z, Huo D, Wang T, Zhang H, Hu J, Yan S (2020) Co3O4 hollow microspheres on polypyrrole nanotubes network enabling long-term cyclability sulfur cathode. Appl Surf Sci 510:145529. https://doi.org/10.1016/j.apsusc.2020.145529

    Article  CAS  Google Scholar 

  61. Liu Y, Wang Y, Chen Y, Wang C, Guo L (2020) NiCo-MOF nanosheets wrapping polypyrrole nanotubes for high-performance supercapacitors. Appl Surf Sci 507:145089. https://doi.org/10.1016/j.apsusc.2019.145089

    Article  CAS  Google Scholar 

  62. Cao G, Wang L, Tian Y (2020) Highly dispersed polypyrrole nanotubes for improving the conductivity of electrically conductive adhesives. J Mater Sci-Mater Electron 31(12):9675–9684. https://doi.org/10.1007/s10854-020-03513-5

    Article  CAS  Google Scholar 

  63. Tian K, Su Z, Wang H, Tian X, Huang W, Xiao C (2017) N-doped reduced graphene oxide/waterborne polyurethane composites prepared by in situ chemical reduction of graphene oxide. Compos Part A-Appl Sci Manuf 94:41–49. https://doi.org/10.1016/j.compositesa.2016.11.020

    Article  CAS  Google Scholar 

  64. Wang Y, Guan H, Dong C, Xiao X, Du S, Wang Y (2016) Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram Int 42(1):936–942. https://doi.org/10.1016/j.ceramint.2015.09.022

    Article  CAS  Google Scholar 

  65. Li Q, Chen L, Ding J, Zhang J, Li X, Zheng K, Zhang X, Tian X (2016) Open-cell phenolic carbon foam and electromagnetic interference shielding properties. Carbon 104:90–105. https://doi.org/10.1016/j.carbon.2016.03.055

    Article  CAS  Google Scholar 

  66. Sheng A, Ren W, Yang Y, Yan D-X, Duan H, Zhao G, Liu Y, Li Z-M (2020) Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Composites Part a-Appl Sci Manufacturing 129:105692. https://doi.org/10.1016/j.compositesa.2019.105692

    Article  CAS  Google Scholar 

  67. Lin T, Yu H, Wang L, Ma Q, Huang H, Wang L, Uddin MA, Haq F, Lemenovskiy DA (2021) A study on the fabrication and microwave shielding properties of PANI/C-60 heterostructures. Polym Compos 42:1961–1976. https://doi.org/10.1002/pc.25948

    Article  CAS  Google Scholar 

  68. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7):1738–1746. https://doi.org/10.1016/j.carbon.2009.02.030

    Article  CAS  Google Scholar 

  69. Karim MR, Hatakeyama K, Matsui T, Takehira H, Taniguchi T, Koinuma M, Matsumoto Y, Akutagawa T, Nakamura T, Noro S, Yamada T, Kitagawa H, Hayami S (2013) Graphene oxide nanosheet with high proton conductivity. J Am Chem Soc 135(22):8097–8100. https://doi.org/10.1021/ja401060q

    Article  CAS  Google Scholar 

  70. Liu J, Zhang H-B, Sun R, Liu Y, Liu Z, Zhou A, Yu Z-Z (2017) Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv Mater 29(38):1702367. https://doi.org/10.1002/adma.201702367

    Article  CAS  Google Scholar 

  71. Mei X, Lu L, Xie Y, Wang W, Tang Y, Teh KS (2019) An ultra-thin carbon-fabric/graphene/poly(vinylidene fluoride) film for enhanced electromagnetic interference shielding. Nanoscale 11(28):13587–13599. https://doi.org/10.1039/c9nr03603b

    Article  CAS  Google Scholar 

  72. Mei X, Lu L, Xie Y, Yu Y-X, Tang Y, Teh KS (2020) Preparation of flexible carbon fiber fabrics with adjustable surface wettability for high-efficiency electromagnetic interference shielding. ACS Appl Mater Interfaces 12(43):49030–49041. https://doi.org/10.1021/acsami.0c08868

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Na Zheng, Sudan Shen, Li Xu and Jing He for their assistance in performing SEM, TEM, TGA and FTIR test, respectively, at State Key Laboratory of Chemical Engineering (Zhejiang University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haojie Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7409 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, T., Yu, H., Wang, Y. et al. Polypyrrole nanotube/ferrocene-modified graphene oxide composites: From fabrication to EMI shielding application. J Mater Sci 56, 18093–18115 (2021). https://doi.org/10.1007/s10853-021-06406-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06406-y

Navigation