Skip to main content
Log in

Electrical, thermal and microwave shielding properties of printable silver nanowires

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silver nanowires find use in a myriad of applications, including communication systems, sensors, medical devices and electrical equipment. Temperature-dependent electrical and thermal properties of chemically derived silver nanowires are rarely explored. In the present work, seed-mediated synthesis of silver nanowires has been carried out, and their electrical and thermal conductivity at 300 K is found to be 1.848 × 107 S/m and 64.8 W/mK, respectively. A screen-printable ink of silver nanowires is formulated and printed on low-cost and widely used substrates like paper and cotton fabrics. Flexible printed electrodes could be made possible with uniform printed structures obtained in cotton fabric and paper substrate. The printed pattern exhibited sheet resistance of 0.7 Ω/sq. Screen-printed silver nanowires on paper show shielding efficiency of 99.9% in X band, which promotes them as excellent candidates in fabricating lightweight electronic devices by a one-step printing process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, Korvink JG, Schubert US (2010) Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J Mater Chem 20(39):8446–8453

    Article  CAS  Google Scholar 

  2. Aleeva Y, Pignataro B (2014) Recent advances in upscalable wet methods and ink formulations for printed electronics. J Mater Chem C 2(32):6436–6453

    Article  CAS  Google Scholar 

  3. Choi HW, Zhou T, Singh M, Jabbour GE (2015) Recent developments and directions in printed nanomaterials. Nanoscale 7(8):3338–3355

    Article  CAS  Google Scholar 

  4. Perelaer J, Jani R, Grouchko M, Kamyshny A, Magdassi S, Schubert US (2012) Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Adv Mater 24(29):3993–3998

    Article  CAS  Google Scholar 

  5. Zhang Y, Cui C, Yang B, Zhang K, Zhu P, Li G, Sun R, Wong C (2018) Size controllable copper nanomaterials for flexible printed electronics. J Mater Sci 53(18):12988–12995

    Article  CAS  Google Scholar 

  6. Menon H, Aiswarya R, Surendran KP (2017) Screen printable MWCNT inks for printed electronics. RSC Adv 7(70):44076–44081

    Article  CAS  Google Scholar 

  7. Pillai AS, Chandran A, Peethambharan SK (2021) MWCNT Ink with PEDOT: PSS as a multifunctional additive for energy efficient flexible heating applications. Applied Materials Today 23:100987

    Article  Google Scholar 

  8. Ma Z, Kang S, Ma J, Shao L, Zhang Y, Liu C, Wei A, Xiang X, Wei L, Gu J (2020) Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2T x mxene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7):8368–8382

    Article  CAS  Google Scholar 

  9. Zhang P, Wyman I, Hu J, Lin S, Zhong Z, Tu Y, Huang Z, Wei Y (2017) Silver nanowires: synthesis technologies, growth mechanism and multifunctional applications. Mater Sci Eng B 223:1–23

    Article  CAS  Google Scholar 

  10. Zhu X, Guo A, Xu J, Kan C (2020) The synthesis of silver nanowires with tunable diameters using halide ions for flexible transparent conductive films. CrystEngComm 22(48):8421–8429

    Article  CAS  Google Scholar 

  11. Sun Y, Gates B, Mayers B, Xia Y (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2(2):165–168

    Article  CAS  Google Scholar 

  12. Wiley B, Herricks T, Sun Y, Xia Y (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4(9):1733–1739

    Article  CAS  Google Scholar 

  13. Da Silva RR, Yang M, Choi S-I, Chi M, Luo M, Zhang C, Li Z-Y, Camargo PH, Ribeiro SJL, Xia Y (2016) Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated polyol method. ACS Nano 10(8):7892–7900

    Article  CAS  Google Scholar 

  14. Wang Z, Wang W, Jiang Z, Yu D (2016) Low temperature sintering nano-silver conductive ink printed on cotton fabric as printed electronics. Prog Org Coat 101:604–611

    Article  CAS  Google Scholar 

  15. Magdassi S, Grouchko M, Berezin O, Kamyshny A (2010) Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4(4):1943–1948

    Article  CAS  Google Scholar 

  16. Jahn SF, Blaudeck T, Baumann RR, Jakob A, Ecorchard P, Rüffer T, Lang H, Schmidt P (2010) Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands. Chem Mater 22(10):3067–3071

    Article  CAS  Google Scholar 

  17. Bhat KS, Ahmad R, Wang Y, Hahn Y-B (2016) Low-temperature sintering of highly conductive silver ink for flexible electronics. J Mater Chem C 4(36):8522–8527

    Article  CAS  Google Scholar 

  18. Liang J, Tong K, Pei Q (2016) A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv Mater 28(28):5986–5996

    Article  CAS  Google Scholar 

  19. Kell AJ, Paquet C, Mozenson O, Djavani-Tabrizi I, Deore B, Liu X, Lopinski GP, James R, Hettak K, Shaker J (2017) Versatile molecular silver ink platform for printed flexible electronics. ACS Appl Mater Interfaces 9(20):17226–17237

    Article  CAS  Google Scholar 

  20. Hyun WJ, Lim S, Ahn BY, Lewis JA, Frisbie CD, Francis LF (2015) Screen printing of highly loaded silver inks on plastic substrates using silicon stencils. ACS Appl Mater Interfaces 7(23):12619–12624

    Article  CAS  Google Scholar 

  21. Zope KR, Cormier D, Williams SA (2018) Reactive silver oxalate ink composition with enhanced curing conditions for flexible substrates. ACS Appl Mater Interfaces 10(4):3830–3837

    Article  CAS  Google Scholar 

  22. Wu C, Fang L, Huang X, Jiang P (2014) Three-dimensional highly conductive graphene–silver nanowire hybrid foams for flexible and stretchable conductors. ACS Appl Mater Interfaces 6(23):21026–21034

    Article  CAS  Google Scholar 

  23. Dijith KS, Aiswarya R, Praveen M, Pillai S, Surendran KP (2018) Polyol derived Ni and NiFe alloys for effective shielding of electromagnetic interference. Mater Chem Front 2(10):1829–1841

    Article  CAS  Google Scholar 

  24. Fiévet F, Ammar-Merah S, Brayner R, Chau F, Giraud M, Mammeri F, Peron J, Piquemal J-Y, Sicard L, Viau G (2018) The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chemical Society Reviews 47:5187–5233

    Article  Google Scholar 

  25. Ou M, Yang T, Harutyunyan S, Chen Y, Chen C, Lai S (2008) Electrical and thermal transport in single nickel nanowire. Appl Phys Lett 92(6):063101

    Article  CAS  Google Scholar 

  26. Cheng Z, Liu L, Xu S, Lu M, Wang X (2015) Temperature dependence of electrical and thermal conduction in single silver nanowire. Sci Rep 5:10718

    Article  CAS  Google Scholar 

  27. Choudhury A (2009) Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sens Actuators B 138(1):318–325

    Article  CAS  Google Scholar 

  28. Ferry DK, Goodnick SM, Bird J (2009) Transport in nanostructures. Cambridge University Press

    Book  Google Scholar 

  29. Rani S, Verma S, Kumar S (2017) Tailoring the structural and optical parameters of zirconia nanoparticles via silver. Appl Phys A 123(8):539

    Article  CAS  Google Scholar 

  30. Wang F, Mao P, He H (2016) Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics. Sci Rep 6:21398

    Article  CAS  Google Scholar 

  31. Bid A, Bora A, Raychaudhuri A (2006) Temperature dependence of the resistance of metallic nanowires of diameter⩾ 15 nm: applicability of bloch-grüneisen theorem. Physical Review B 74(3):035426

    Article  CAS  Google Scholar 

  32. Xie Y, Zhu B, Liu J, Xu Z, Wang X (2018) Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size. Frontiers in Energy 12(1):143–157

    Article  Google Scholar 

  33. He G-C, Dong X-Z, Liu J, Lu H, Zhao Z-S (2018) Investigate the electrical and thermal properties of the low temperature resistant silver nanowire fabricated by two-beam laser technique. Appl Surf Sci 439:96–100

    Article  CAS  Google Scholar 

  34. Somalu MR, Brandon NP (2012) Rheological studies of nickel/scandia-stabilized-zirconia screen printing inks for solid oxide fuel cell anode fabrication. J Am Ceram Soc 95(4):1220–1228

    Article  CAS  Google Scholar 

  35. Banks WH (1969) Inks, plates and print quality. In: Proceedings of the ninth international conference of printing research institutes held in Rome, 1967. Elsevier

  36. Pullanchiyodan A, Surendran KP (2016) Formulation of sol-gel derived bismuth silicate dielectric ink for flexible electronics applications. Ind Eng Chem Res 55(26):7108–7115

    Article  CAS  Google Scholar 

  37. Joseph AM, Nagendra B, Bhoje Gowd E, Surendran KP (2016) Screen-printable electronic ink of ultrathin boron nitride nanosheets. ACS Omega 1(6):1220–1228

    Article  CAS  Google Scholar 

  38. Saini P, Choudhary V (2013) Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J Nanopart Res 15(1):1–7

    Article  CAS  Google Scholar 

  39. Celozzi S, Araneo R, Lovat G (2008) Electromagnetic shielding, vol 192. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  40. Cao M, Han C, Wang X, Zhang M, Zhang Y, Shu J, Yang H, Fang X, Yuan J (2018) Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J Mater Chem C 6(17):4586–4602

    Article  CAS  Google Scholar 

  41. Ma J, Zhan M, Wang K (2014) Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding. ACS Appl Mater Interfaces 7(1):563–576

    Article  CAS  Google Scholar 

  42. Cao W-Q, Wang X-X, Yuan J, Wang W-Z, Cao M-S (2015) Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C 3(38):10017–10022

    Article  CAS  Google Scholar 

  43. Dijith KS, Pillai S, Surendran KP (2017) Screen printed silver patterns on La0.5Sr0.5CoO3−δ-epoxy composite as a strategy for many-fold increase in EMI shielding. Surf Coat Technol 330:34–41

    Article  CAS  Google Scholar 

  44. Zeng S, Huang Z-x, Jiang H, Li Y (2020) From waste to wealth: a lightweight and flexible leather solid waste/polyvinyl alcohol/silver paper for highly efficient electromagnetic interference shielding. ACS Appl Mater Interfaces 12(46):52038–52049

    Article  CAS  Google Scholar 

  45. Remadevi A, Kesavapillai Sreedeviamma D, Surendran KP (2018) Printable hierarchical nickel nanowires for soft magnetic applications. ACS Omega 3(10):14245–14257

    Article  CAS  Google Scholar 

  46. Tong XC (2016) Advanced materials and design for electromagnetic interference shielding. CRC Press, Boca Raton

    Book  Google Scholar 

  47. Chung D (2000) Materials for electromagnetic interference shielding. J Mater Eng Perform 9(3):350–354

    Article  CAS  Google Scholar 

  48. Yu Y-H, Ma C-CM, Teng C-C, Huang Y-L, Lee S-H, Wang I, Wei M-H (2012) Electrical, morphological, and electromagnetic interference shielding properties of silver nanowires and nanoparticles conductive composites. Mater Chem Phys 136(2–3):334–340

    Article  CAS  Google Scholar 

  49. Arjmand M, Moud AA, Li Y, Sundararaj U (2015) Outstanding electromagnetic interference shielding of silver nanowires: comparison with carbon nanotubes. RSC Adv 5(70):56590–56598

    Article  CAS  Google Scholar 

  50. Jung J, Lee H, Ha I, Cho H, Kim KK, Kwon J, Won P, Hong S, Ko SH (2017) Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl Mater Interfaces 9(51):44609–44616

    Article  CAS  Google Scholar 

  51. Lee T-W, Lee S-E, Jeong YG (2016) Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl Mater Interfaces 8(20):13123–13132

    Article  CAS  Google Scholar 

  52. Zeng Z, Chen M, Pei Y, Seyed Shahabadi SI, Che B, Wang P, Lu X (2017) Ultralight and flexible polyurethane/silver nanowire nanocomposites with unidirectional pores for highly effective electromagnetic shielding. ACS Appl Mater Interfaces 9(37):32211–32219

    Article  CAS  Google Scholar 

  53. Dijith KS, Pillai S, Surendran KP (2017) Thermophysical and microwave shielding properties of La0.5Sr0.5CoO3−δ and its composite with epoxy. J Electron Mater 46(8):5158–5167

    Article  CAS  Google Scholar 

  54. Sreedeviamma DK, Remadevi A, Sruthi CV, Pillai S, Peethambharan SK (2020) Nickel electrodeposited textiles as wearable radar invisible fabrics. J Ind Eng Chem 88:196–206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Aiswarya Remadevi thanks CSIR for the financial support. One of the authors Dijith Kesavapillai Sreedeviamma is thankful to the University Grant Commission, New Delhi, for the financial support. The authors also acknowledge Council of Scientific and Industrial Research, New Delhi, for funding through a Niche Creating Project (MLP 0044). The authors are also thankful to M. R. Chandran and Harish Raj for SEM, Prithviraj and Prabhakar Rao for XRD measurements, K. Firoz and Peer Muhammed for viscosity measurements, Kiran Mohan for TEM and Ajeesh Paulose and Dr Manoj R. Varma for PPMS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuzhichalil P. Surendran.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 112 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remadevi, A., Jose, S.A., Sreedeviamma, D.K. et al. Electrical, thermal and microwave shielding properties of printable silver nanowires. J Mater Sci 56, 15971–15984 (2021). https://doi.org/10.1007/s10853-021-06327-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06327-w

Navigation